Spark实现WordCount的几种方式总结
程序员文章站
2022-06-04 23:36:49
...
点击上方蓝色字体,选择“设为星标”
回复”资源“获取更多惊喜
大数据技术与架构
点击右侧关注,大数据开发领域最强公众号!
暴走大数据
点击右侧关注,暴走大数据!
方法一:map + reduceByKey
package com.cw.bigdata.spark.wordcount
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object WordCount1 {
def main(args: Array[String]): Unit = {
val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount1")
val sc: SparkContext = new SparkContext(config)
val lines: RDD[String] = sc.textFile("in")
lines.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect().foreach(println)
}
}
方法二:使用countByValue代替map + reduceByKey
package com.cw.bigdata.spark.wordcount
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object WordCount2 {
def main(args: Array[String]): Unit = {
val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount2")
val sc: SparkContext = new SparkContext(config)
val lines: RDD[String] = sc.textFile("in")
lines.flatMap(_.split(" ")).countByValue().foreach(println)
}
}
方法三:aggregateByKey或者foldByKey
package com.cw.bigdata.spark.wordcount
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
/**
* WordCount实现第三种方式:aggregateByKey或者foldByKey
*
* def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,combOp: (U, U) => U): RDD[(K, U)]
* 1.zeroValue:给每一个分区中的每一个key一个初始值;
* 2.seqOp:函数用于在每一个分区中用初始值逐步迭代value;(分区内聚合函数)
* 3.combOp:函数用于合并每个分区中的结果。(分区间聚合函数)
*
* foldByKey相当于aggregateByKey的简化操作,seqop和combop相同
*/
object WordCount3 {
def main(args: Array[String]): Unit = {
val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount3")
val sc: SparkContext = new SparkContext(config)
val lines: RDD[String] = sc.textFile("in")
lines.flatMap(_.split(" ")).map((_, 1)).aggregateByKey(0)(_ + _, _ + _).collect().foreach(println)
lines.flatMap(_.split(" ")).map((_, 1)).foldByKey(0)(_ + _).collect().foreach(println)
}
}
方法四:groupByKey+map
package com.cw.bigdata.spark.wordcount
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
/**
* WordCount实现的第四种方式:groupByKey+map
*/
object WordCount4 {
def main(args: Array[String]): Unit = {
val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount4")
val sc: SparkContext = new SparkContext(config)
val lines: RDD[String] = sc.textFile("in")
val groupByKeyRDD: RDD[(String, Iterable[Int])] = lines.flatMap(_.split(" ")).map((_, 1)).groupByKey()
groupByKeyRDD.map(tuple => {
(tuple._1, tuple._2.sum)
}).collect().foreach(println)
}
}
方法五:Scala原生实现wordcount
package com.cw.bigdata.spark.wordcount
/**
* Scala原生实现wordcount
*/
object WordCount5 {
def main(args: Array[String]): Unit = {
val list = List("cw is cool", "wc is beautiful", "andy is beautiful", "mike is cool")
/**
* 第一步,将list中的元素按照分隔符这里是空格拆分,然后展开
* 先map(_.split(" "))将每一个元素按照空格拆分
* 然后flatten展开
* flatmap即为上面两个步骤的整合
*/
val res0 = list.map(_.split(" ")).flatten
val res1 = list.flatMap(_.split(" "))
println("第一步结果")
println(res0)
println(res1)
/**
* 第二步是将拆分后得到的每个单词生成一个元组
* k是单词名称,v任意字符即可这里是1
*/
val res3 = res1.map((_, 1))
println("第二步结果")
println(res3)
/**
* 第三步是根据相同的key合并
*/
val res4 = res3.groupBy(_._1)
println("第三步结果")
println(res4)
/**
* 最后一步是求出groupBy后的每个key对应的value的size大小,即单词出现的个数
*/
val res5 = res4.mapValues(_.size)
println("最后一步结果")
println(res5.toBuffer)
}
}
方法六:combineByKey
package com.cw.bigdata.spark.wordcount
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
/**
* WordCount实现的第六种方式:combineByKey
*/
object WordCount6 {
def main(args: Array[String]): Unit = {
val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("combineByKey")
val sc: SparkContext = new SparkContext(config)
val lines: RDD[String] = sc.textFile("in")
val mapRDD: RDD[(String, Int)] = lines.flatMap(_.split(" ")).map((_, 1))
// combineByKey实现wordcount
mapRDD.combineByKey(
x => x,
(x: Int, y: Int) => x + y,
(x: Int, y: Int) => x + y
).collect().foreach(println)
}
}
欢迎点赞+收藏
欢迎转发至朋友圈
上一篇: [opencv自学笔记]读写图像、视频和几何图形的绘制
下一篇: Spring学习笔记4——Bean