欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Spark实现WordCount的几种方式总结

程序员文章站 2022-06-04 23:36:49
...

点击上方蓝色字体,选择“设为星标”

回复”资源“获取更多惊喜

Spark实现WordCount的几种方式总结

Spark实现WordCount的几种方式总结

大数据技术与架构

点击右侧关注,大数据开发领域最强公众号!

Spark实现WordCount的几种方式总结

Spark实现WordCount的几种方式总结

暴走大数据

点击右侧关注,暴走大数据!

Spark实现WordCount的几种方式总结

方法一:map + reduceByKey

package com.cw.bigdata.spark.wordcount


import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}


object WordCount1 {
  def main(args: Array[String]): Unit = {
    val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount1")


    val sc: SparkContext = new SparkContext(config)


    val lines: RDD[String] = sc.textFile("in")


    lines.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect().foreach(println)
  }
}

方法二:使用countByValue代替map + reduceByKey

package com.cw.bigdata.spark.wordcount


import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}


object WordCount2 {
  def main(args: Array[String]): Unit = {
    val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount2")


    val sc: SparkContext = new SparkContext(config)


    val lines: RDD[String] = sc.textFile("in")


    lines.flatMap(_.split(" ")).countByValue().foreach(println)


  }
}

方法三:aggregateByKey或者foldByKey

package com.cw.bigdata.spark.wordcount


import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD


/**
  * WordCount实现第三种方式:aggregateByKey或者foldByKey
  *
  * def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,combOp: (U, U) => U): RDD[(K, U)]
  *   1.zeroValue:给每一个分区中的每一个key一个初始值;
  *   2.seqOp:函数用于在每一个分区中用初始值逐步迭代value;(分区内聚合函数)
  *   3.combOp:函数用于合并每个分区中的结果。(分区间聚合函数)
  *
  *  foldByKey相当于aggregateByKey的简化操作,seqop和combop相同
  */
object WordCount3 {
  def main(args: Array[String]): Unit = {
    val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount3")


    val sc: SparkContext = new SparkContext(config)


    val lines: RDD[String] = sc.textFile("in")


    lines.flatMap(_.split(" ")).map((_, 1)).aggregateByKey(0)(_ + _, _ + _).collect().foreach(println)
    
    lines.flatMap(_.split(" ")).map((_, 1)).foldByKey(0)(_ + _).collect().foreach(println)


  }
}

方法四:groupByKey+map

package com.cw.bigdata.spark.wordcount


import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD


/**
  * WordCount实现的第四种方式:groupByKey+map
  */
object WordCount4 {
  def main(args: Array[String]): Unit = {
    val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount4")


    val sc: SparkContext = new SparkContext(config)


    val lines: RDD[String] = sc.textFile("in")


    val groupByKeyRDD: RDD[(String, Iterable[Int])] = lines.flatMap(_.split(" ")).map((_, 1)).groupByKey()


    groupByKeyRDD.map(tuple => {
      (tuple._1, tuple._2.sum)
    }).collect().foreach(println)


  }
}

方法五:Scala原生实现wordcount

package com.cw.bigdata.spark.wordcount




/**
  * Scala原生实现wordcount
  */
object WordCount5 {
  def main(args: Array[String]): Unit = {


    val list = List("cw is cool", "wc is beautiful", "andy is beautiful", "mike is cool")
    /**
      * 第一步,将list中的元素按照分隔符这里是空格拆分,然后展开
      * 先map(_.split(" "))将每一个元素按照空格拆分
      * 然后flatten展开
      * flatmap即为上面两个步骤的整合
      */
    val res0 = list.map(_.split(" ")).flatten
    val res1 = list.flatMap(_.split(" "))


    println("第一步结果")
    println(res0)
    println(res1)


    /**
      * 第二步是将拆分后得到的每个单词生成一个元组
      * k是单词名称,v任意字符即可这里是1
      */
    val res3 = res1.map((_, 1))
    println("第二步结果")
    println(res3)
    /**
      * 第三步是根据相同的key合并
      */
    val res4 = res3.groupBy(_._1)
    println("第三步结果")
    println(res4)
    /**
      * 最后一步是求出groupBy后的每个key对应的value的size大小,即单词出现的个数
      */
    val res5 = res4.mapValues(_.size)
    println("最后一步结果")
    println(res5.toBuffer)
  }
}

方法六:combineByKey

package com.cw.bigdata.spark.wordcount


import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD


/**
  * WordCount实现的第六种方式:combineByKey
  */
object WordCount6 {
  def main(args: Array[String]): Unit = {
    val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("combineByKey")


    val sc: SparkContext = new SparkContext(config)


    val lines: RDD[String] = sc.textFile("in")


    val mapRDD: RDD[(String, Int)] = lines.flatMap(_.split(" ")).map((_, 1))


    // combineByKey实现wordcount
    mapRDD.combineByKey(
      x => x,
      (x: Int, y: Int) => x + y,
      (x: Int, y: Int) => x + y
    ).collect().foreach(println)


  }
}

欢迎点赞+收藏

欢迎转发至朋友圈

Spark实现WordCount的几种方式总结