欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python 实现A*算法的示例代码

程序员文章站 2022-06-04 21:14:27
a*作为最常用的路径搜索算法,值得我们去深刻的研究。路径规划项目。先看一下*给的算法解释:https://en.wikipedia.org/wiki/a*_searc...

a*作为最常用的路径搜索算法,值得我们去深刻的研究。路径规划项目。先看一下*给的算法解释:https://en.wikipedia.org/wiki/a*_search_algorithm

a *是最佳优先搜索它通过在解决方案的所有可能路径(目标)中搜索导致成本最小(行进距离最短,时间最短等)的问题来解决问题。 ),并且在这些路径中,它首先考虑那些似乎最快速地引导到解决方案的路径。它是根据加权图制定的:从图的特定节点开始,它构造从该节点开始的路径树,一次一步地扩展路径,直到其一个路径在预定目标节点处结束。

在其主循环的每次迭代中,a *需要确定将其部分路径中的哪些扩展为一个或多个更长的路径。它是基于成本(总重量)的估计仍然到达目标节点。具体而言,a *选择最小化的路径

f(n)= g(n)+ h(n)

其中n是路径上的最后一个节点,g(n)是从起始节点到n的路径的开销,h(n)是一个启发式,用于估计从n到目标的最便宜路径的开销。启发式是特定于问题的。为了找到实际最短路径的算法,启发函数必须是可接受的,这意味着它永远不会高估实际成本到达最近的目标节点。

*给出的伪代码:

function a*(start, goal)
  // the set of nodes already evaluated
  closedset := {}

  // the set of currently discovered nodes that are not evaluated yet.
  // initially, only the start node is known.
  openset := {start}

  // for each node, which node it can most efficiently be reached from.
  // if a node can be reached from many nodes, camefrom will eventually contain the
  // most efficient previous step.
  camefrom := an empty map

  // for each node, the cost of getting from the start node to that node.
  gscore := map with default value of infinity

  // the cost of going from start to start is zero.
  gscore[start] := 0

  // for each node, the total cost of getting from the start node to the goal
  // by passing by that node. that value is partly known, partly heuristic.
  fscore := map with default value of infinity

  // for the first node, that value is completely heuristic.
  fscore[start] := heuristic_cost_estimate(start, goal)

  while openset is not empty
    current := the node in openset having the lowest fscore[] value
    if current = goal
      return reconstruct_path(camefrom, current)

    openset.remove(current)
    closedset.add(current)

    for each neighbor of current
      if neighbor in closedset
        continue // ignore the neighbor which is already evaluated.

      if neighbor not in openset // discover a new node
        openset.add(neighbor)
      
      // the distance from start to a neighbor
      //the "dist_between" function may vary as per the solution requirements.
      tentative_gscore := gscore[current] + dist_between(current, neighbor)
      if tentative_gscore >= gscore[neighbor]
        continue // this is not a better path.

      // this path is the best until now. record it!
      camefrom[neighbor] := current
      gscore[neighbor] := tentative_gscore
      fscore[neighbor] := gscore[neighbor] + heuristic_cost_estimate(neighbor, goal) 

  return failure

function reconstruct_path(camefrom, current)
  total_path := {current}
  while current in camefrom.keys:
    current := camefrom[current]
    total_path.append(current)
  return total_path

下面是udacity课程中路径规划项目,结合上面的伪代码,用python 实现a* 

import math
def shortest_path(m,start,goal):
  sx=m.intersections[start][0]
  sy=m.intersections[start][1]
  gx=m.intersections[goal][0]
  gy=m.intersections[goal][1] 
  h=math.sqrt((sx-gx)*(sx-gx)+(sy-gy)*(sy-gy))
  closedset=set()
  openset=set()
  openset.add(start)
  gscore={}
  gscore[start]=0
  fscore={}
  fscore[start]=h
  camefrom={}
  sumg=0
  new=0
  bool=false
  while len(openset)!=0: 
    max=1000
    for new in openset:
      print("new",new)
      if fscore[new]<max:
        max=fscore[new]
        #print("max=",max)
        new=new
    current=new
    print("current=",current)
    if current==goal:
      return reconstruct_path(camefrom,current)
    openset.remove(current)
    closedset.add(current)
    #dafult=m.roads(current)
    for neighbor in m.roads[current]:
      bool=false
      print("key=",neighbor)
      a={neighbor}
      if len(a&closedset)>0:
        continue
      print("key is not in closeset")
      if len(a&openset)==0:
        openset.add(neighbor)  
      else:
        bool=true
      x= m.intersections[current][0]
      y= m.intersections[current][1]
      x1=m.intersections[neighbor][0]
      y1=m.intersections[neighbor][1]
      g=math.sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1))
      h=math.sqrt((x1-gx)*(x1-gx)+(y1-gy)*(y1-gy)) 
      
      new_gscore=gscore[current]+g
      if bool==true:
        if new_gscore>=gscore[neighbor]:
          continue
      print("new_gscore",new_gscore) 
      camefrom[neighbor]=current
      gscore[neighbor]=new_gscore     
      fscore[neighbor] = new_gscore+h
      print("fscore",neighbor,"is",new_gscore+h)
      print("fscore=",new_gscore+h)
      
    print("__________++--------------++_________")
                   
def reconstruct_path(camefrom,current):
  print("已到达lllll")
  total_path=[]
  total_path.append(current)
  for key,value in camefrom.items():
    print("key",key,":","value",value)
    
  while current in camefrom.keys():
    
    current=camefrom[current]
    total_path.append(current)
  total_path=list(reversed(total_path))  
  return total_path

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。