python 实现A*算法的示例代码
程序员文章站
2022-06-04 21:14:27
a*作为最常用的路径搜索算法,值得我们去深刻的研究。路径规划项目。先看一下*给的算法解释:https://en.wikipedia.org/wiki/a*_searc...
a*作为最常用的路径搜索算法,值得我们去深刻的研究。路径规划项目。先看一下*给的算法解释:https://en.wikipedia.org/wiki/a*_search_algorithm
a *是最佳优先搜索它通过在解决方案的所有可能路径(目标)中搜索导致成本最小(行进距离最短,时间最短等)的问题来解决问题。 ),并且在这些路径中,它首先考虑那些似乎最快速地引导到解决方案的路径。它是根据加权图制定的:从图的特定节点开始,它构造从该节点开始的路径树,一次一步地扩展路径,直到其一个路径在预定目标节点处结束。
在其主循环的每次迭代中,a *需要确定将其部分路径中的哪些扩展为一个或多个更长的路径。它是基于成本(总重量)的估计仍然到达目标节点。具体而言,a *选择最小化的路径
f(n)= g(n)+ h(n)
其中n是路径上的最后一个节点,g(n)是从起始节点到n的路径的开销,h(n)是一个启发式,用于估计从n到目标的最便宜路径的开销。启发式是特定于问题的。为了找到实际最短路径的算法,启发函数必须是可接受的,这意味着它永远不会高估实际成本到达最近的目标节点。
*给出的伪代码:
function a*(start, goal) // the set of nodes already evaluated closedset := {} // the set of currently discovered nodes that are not evaluated yet. // initially, only the start node is known. openset := {start} // for each node, which node it can most efficiently be reached from. // if a node can be reached from many nodes, camefrom will eventually contain the // most efficient previous step. camefrom := an empty map // for each node, the cost of getting from the start node to that node. gscore := map with default value of infinity // the cost of going from start to start is zero. gscore[start] := 0 // for each node, the total cost of getting from the start node to the goal // by passing by that node. that value is partly known, partly heuristic. fscore := map with default value of infinity // for the first node, that value is completely heuristic. fscore[start] := heuristic_cost_estimate(start, goal) while openset is not empty current := the node in openset having the lowest fscore[] value if current = goal return reconstruct_path(camefrom, current) openset.remove(current) closedset.add(current) for each neighbor of current if neighbor in closedset continue // ignore the neighbor which is already evaluated. if neighbor not in openset // discover a new node openset.add(neighbor) // the distance from start to a neighbor //the "dist_between" function may vary as per the solution requirements. tentative_gscore := gscore[current] + dist_between(current, neighbor) if tentative_gscore >= gscore[neighbor] continue // this is not a better path. // this path is the best until now. record it! camefrom[neighbor] := current gscore[neighbor] := tentative_gscore fscore[neighbor] := gscore[neighbor] + heuristic_cost_estimate(neighbor, goal) return failure function reconstruct_path(camefrom, current) total_path := {current} while current in camefrom.keys: current := camefrom[current] total_path.append(current) return total_path
下面是udacity课程中路径规划项目,结合上面的伪代码,用python 实现a*
import math def shortest_path(m,start,goal): sx=m.intersections[start][0] sy=m.intersections[start][1] gx=m.intersections[goal][0] gy=m.intersections[goal][1] h=math.sqrt((sx-gx)*(sx-gx)+(sy-gy)*(sy-gy)) closedset=set() openset=set() openset.add(start) gscore={} gscore[start]=0 fscore={} fscore[start]=h camefrom={} sumg=0 new=0 bool=false while len(openset)!=0: max=1000 for new in openset: print("new",new) if fscore[new]<max: max=fscore[new] #print("max=",max) new=new current=new print("current=",current) if current==goal: return reconstruct_path(camefrom,current) openset.remove(current) closedset.add(current) #dafult=m.roads(current) for neighbor in m.roads[current]: bool=false print("key=",neighbor) a={neighbor} if len(a&closedset)>0: continue print("key is not in closeset") if len(a&openset)==0: openset.add(neighbor) else: bool=true x= m.intersections[current][0] y= m.intersections[current][1] x1=m.intersections[neighbor][0] y1=m.intersections[neighbor][1] g=math.sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1)) h=math.sqrt((x1-gx)*(x1-gx)+(y1-gy)*(y1-gy)) new_gscore=gscore[current]+g if bool==true: if new_gscore>=gscore[neighbor]: continue print("new_gscore",new_gscore) camefrom[neighbor]=current gscore[neighbor]=new_gscore fscore[neighbor] = new_gscore+h print("fscore",neighbor,"is",new_gscore+h) print("fscore=",new_gscore+h) print("__________++--------------++_________") def reconstruct_path(camefrom,current): print("已到达lllll") total_path=[] total_path.append(current) for key,value in camefrom.items(): print("key",key,":","value",value) while current in camefrom.keys(): current=camefrom[current] total_path.append(current) total_path=list(reversed(total_path)) return total_path
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
下一篇: Python延时操作实现方法示例