JDK1.8源码解析-LinkedList
程序员文章站
2022-06-04 19:23:10
...
LinkedList源码解析
一封不动的源代码 + 注释
注意
poll()返回并删除头节点
remove()返回并删除头节点
offer(E e)添加元素到队列尾部
offerFirst( E e)插入指定元素到队列头部
offerLast( E e)插入指定元素到队列尾部
peekFirst()返回队列的头元素
peekLast()返回队列的尾元素
pollFirst()删除并返回队列的第一个元素,如果头节点为空,则返回null.
pollLast()删除并返回队列的最后个元素,如果尾节点为空,则返回null.
栈方法
push( E e)插入指定元素到栈头 =addfirst
pop()删除并返回栈头元素
LinkedList所有代码如下:
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*/
package java.util;
import java.util.LinkedList.Node;
import java.util.function.Consumer;
/**
* @author Josh Bloch
* @see List
* @see ArrayList
* @since 1.2
* @param <E> the type of elements held in this collection
LinkedList是List接口和Deque接口的双向链表实现。LinkedList实现了所有的列表操作,允许所有的元素(包括空元素)。
所有的操作都是在对双向链表操作。
LinkedList不是线程安全的。
Collections.synchronizedList方法可以实现线程安全的操作。
由iterator()和listIterator()返回的迭代器是fail-fast的。
*/
/*
支持泛型
AbstractSequentialList 只支持按次序访问
DequeLinkedList可用作队列或双端队列
clone可以调用clone()方法来返回实例的field-for-field拷贝
Serializable:表明该类是可以序列化的。
*/
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
/**
* LinkedList节点个数
*/
transient int size = 0;
/**
* 指向头节点的指针
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
* 节点定义 补充
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
*/
transient Node<E> first;
/**
* 指向尾节点的指针
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
transient Node<E> last;
/**
* Constructs an empty list.
*/
public LinkedList() {
}
/**
* 根据指定集合c构造linkedList。先构造一个空linkedlist,在把指定集合c中的所有元素都添加到linkedList中。
*
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
/**
* 在表头添加元素
*/
private void linkFirst(E e) {
//使节点f指向原来的头结点
final Node<E> f = first;
//新建节点newNode,节点的前指针指向null,后指针原来的头节点
final Node<E> newNode = new Node<>(null, e, f);
//头指针指向新的头节点newNode
first = newNode;
//如果原来的头结点为null,更新尾指针,否则使原来的头结点f的前置指针指向新的头结点newNode
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}
/**
* 在表尾插入指定元素e
*/
void linkLast(E e) {
//使节点l指向原来的尾结点
final Node<E> l = last;
//新建节点newNode,节点的前指针指向l,后指针为null
final Node<E> newNode = new Node<>(l, e, null);
//尾指针指向新的头节点newNode
last = newNode;
//如果原来的尾结点为null,更新头指针,否则使原来的尾结点l的后置指针指向新的头结点newNode
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
/**
* 在指定节点succ之前插入指定元素e。指定节点succ不能为null。
*/
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
//获得指定节点的前驱
final Node<E> pred = succ.prev;
//新建节点newNode,前置指针指向pred,后置指针指向succ
final Node<E> newNode = new Node<>(pred, e, succ);
//succ的前置指针指向newTouch
succ.prev = newNode;
//如果指定节点的前驱为null,将newTouch设为头节点。否则更新pred的后置节点
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}
/**
* 删除头结点f,并返回头结点的值
*/
private E unlinkFirst( Node<E> f) {
// assert f == first && f != null;
// 保存头结点的值
final E element = f.item;
// 保存头结点指向的下个节点
final Node<E> next = f.next;
//头结点的值置为null
f.item = null;
//头结点的后置指针指向null
f.next = null; // help GC
//将头结点置为next
first = next;
//如果next为null,将尾节点置为null,否则将next的后置指针指向null
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
//返回被删除的头结点的值
return element;
}
/**
* 删除尾节点l.并返回尾节点的值
*/
private E unlinkLast(Node<E> l) {
// assert l == last && l != null;
// 保存尾节点的值
final E element = l.item;
//获取新的尾节点prev
final Node<E> prev = l.prev;
//旧尾节点的值置为null
l.item = null;
//旧尾节点的后置指针指向null
l.prev = null; // help GC
//将新的尾节点置为prev
last = prev;
//如果新的尾节点为null,头结点置为null,否则将新的尾节点的后置指针指向null
if (prev == null)
first = null;
else
prev.next = null;
size--;
modCount++;
//返回被删除的尾节点的值
return element;
}
/**
* 删除指定节点,返回指定元素的值
*/
E unlink(Node<E> x) {
// assert x != null;
// 保存指定节点的值
final E element = x.item;
// 获取指定节点的下个节点next
final Node<E> next = x.next;
// 获取指定节点的下个节点prev
final Node<E> prev = x.prev;
//如果prev为null,那么next为新的头结点,否则将prev的后置指针指向next,x的前置指针指向null
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
//如果next为null,那么prev为新的尾结点,否则将next的前置指针指向prev,x的后置指针指向null
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
//x的值置为null
x.item = null;
size--;
modCount++;
//返回被删除的节点的值
return element;
}
/**
* 返回链表中的头结点的值.
*
* @return 返回链表中的头结点的值
* @throws NoSuchElementException 如果链表为空
*/
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}
/**
* 返回链表中的尾结点的值.
*
* @return 返回链表中的头结点的值
* @throws NoSuchElementException 如果链表为空
*/
public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}
/*
* 常用方法
*/
/**
* 删除并返回表头元素.
*
* @return 表头元素
* @throws NoSuchElementException 链表为空
*/
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}
/**
* 删除并返回表尾元素.
*
* @return 表尾元素
* @throws NoSuchElementException 链表为空
*/
public E removeLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return unlinkLast(l);
}
/**
* 在表头插入指定元素.
*
* @param e 插入的指定元素
*/
public void addFirst(E e) {
linkFirst(e);
}
/**
* 在表尾插入指定元素.
*
* 该方法等价于add()
*
* @param e 插入的指定元素
*/
public void addLast(E e) {
linkLast(e);
}
/**
* 判断链表是否包含指定对象o
* @param o 指定对象
* @return 是否包含指定对象
*/
public boolean contains(Object o) {
return indexOf(o) != -1;
}
/**
* 返回链表元素个数
*
* @return 链表元素个数
*/
public int size() {
return size;
}
/**
* 在表尾插入指定元素.
*
* 该方法等价于addLast
*
* @param e 插入的指定元素
* @return true
*/
public boolean add(E e) {
linkLast(e);
return true;
}
/**
* 正向遍历链表,删除出现的第一个值为指定对象的节点
*
* @param o 要删除的节点置
* @return 如果o在链表中存在,返回true
*/
public boolean remove(Object o) {
//遍历链表,如果o为null,删除第一个值为null的节点,返回true。如果不为null,删除第一个值为o的节点。如果链表中存在o,就返回true。
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
/**
* 插入指定集合到链尾
*
* @param c 指定集合
* @return 如果链表改变,返回true
* @throws NullPointerException 如果指定集合为null
*/
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}
/**
* 插入指定集合到链尾的指定位置
*
* @param index 指定的插入位置
* @param c 插入的指定集合
* @return 如果链表改变,返回true
* @throws IndexOutOfBoundsException 如果index<0或index>size
* @throws NullPointerException 如果指定集合为null
*/
public boolean addAll(int index, Collection<? extends E> c) {
//检查插入的位置是否合法
checkPositionIndex(index);
Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;//如果c是空的话那么就返回false
//定义两个节点指针,指向插入点前后的节点元素
Node<E> pred, succ;
if (index == size) {
succ = null;
pred = last;
} else {
succ = node(index);//详见L566
pred = succ.prev;
}
// 插入集合中所有元素
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;//把前面节点指向newNode即可!
}
// 修改插入后的指针问题
if (succ == null) {
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
}
size += numNew;
modCount++;
return true;
}
/**
* 删除链表中的所有元素
*/
public void clear() {
// Clearing all of the links between nodes is "unnecessary", but:
// - helps a generational GC if the discarded nodes inhabit
// more than one generation
// - is sure to free memory even if there is a reachable Iterator
for (Node<E> x = first; x != null; ) {
Node<E> next = x.next;
x.item = null;
x.next = null;
x.prev = null;
x = next;
}
first = last = null;
size = 0;
modCount++;
}
// Positional Access Operations 按位操作
/**
* 返回指定索引处的元素
*
* @param index 指定索引
* @return 指定索引处的元素
* @throws IndexOutOfBoundsException 如果索引index越界
*/
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
/**
* 替换指定索引处的元素为指定元素element
*
* @param index 被替换的元素的索引
* @param element
* @return 指定元素element
* @throws IndexOutOfBoundsException 索引越界
*/
public E set(int index, E element) {
checkElementIndex(index);
Node<E> x = node(index);
E oldVal = x.item;
x.item = element;
return oldVal;
}
/**
* 插入指定元素到指定索引处
*
* @param index 指定索引
* @param element 指定元素
* @throws IndexOutOfBoundsException 索引越界
*/
public void add(int index, E element) {
checkPositionIndex(index);
if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}
/**
* 删除指定索引处的元素
*
* @param 指定索引
* @return 指定索引处的元素
* @throws IndexOutOfBoundsException 索引越界
*/
public E remove(int index) {
checkElementIndex(index);
return unlink(node(index));
}
/**
* 返回索引是否越界
*/
private boolean isElementIndex(int index) {
return index >= 0 && index < size;
}
/**
* 返回插入操作时给定的索引是否合法
*/
private boolean isPositionIndex(int index) {
return index >= 0 && index <= size;//多了=
}
/**
* 索引越界时打印的信息
*/
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
/**
* 检查索引是否越界
*/
private void checkElementIndex(int index) {
if (!isElementIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* 检查插入操作时给定的索引是否合法
*/
private void checkPositionIndex(int index) {
if (!isPositionIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* 返回在指定索引处的非空元素
*/
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {//从头到尾还是从尾到头遍历
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
// Search Operations 查找操作
/**
* 正向遍历链表,返回指定元素第一次出现时的索引。如果元素没有出现,返回-1.
*
* @param o 需要查找的元素
* @return 指定元素第一次出现时的索引。如果元素没有出现,返回-1。
*/
public int indexOf(Object o) {
int index = 0;
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)
return index;
index++;
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))
return index;
index++;
}
}
return -1;
}
/**
* 逆向遍历链表,返回指定元素第一次出现时的索引。如果元素没有出现,返回-1.
*
* @param o 需要查找的元素
* @return 指定元素第一次出现时的索引。如果元素没有出现,返回-1。
*/
public int lastIndexOf(Object o) {
int index = size;
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (x.item == null)
return index;
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (o.equals(x.item))
return index;
}
}
return -1;
}
// Queue operations.
/**
* 返回头节点的元素,如果链表为空则返回null
*
* @return 返回头节点的元素,如果链表为空则返回null
* @since 1.5
*/
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
/**
* 获取表头节点的值,头节点为空抛出异常
*
* @return 获取表头节点的值
* @throws NoSuchElementException 如果链表为空
* @since 1.5
*/
public E element() {
return getFirst();
}
/**
* 返回并删除头节点,如果链表为空则返回null
*
* @return 返回并删除头节点,如果链表为空则返回null
* @since 1.5
*/
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
/**
* 删除并返回头节点,如果链表为空,抛出异常
*
* @return 头结点
* @throws NoSuchElementException 链表为空
* @since 1.5
*/
public E remove() {
return removeFirst();
}
/**
* 添加元素到队列尾部
*
* @param e 指定元素
* @return
* @since 1.5
*/
public boolean offer(E e) {
return add(e);
}
// Deque operations 双向队列操作
/**
* 插入指定元素到队列头部.
*
* @param e 插入的元素
* @return true
* @since 1.6
*/
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
/**
* 插入指定元素到队列尾部.
*
* @param e 插入的元素
* @return true
* @since 1.6
*/
public boolean offerLast(E e) {
addLast(e);
return true;
}
/**
* 返回队列的头元素,如果头节点为空则返回空
*
* @return 返回队列的头元素,如果头节点为空则返回空
* @since 1.6
*/
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
/**
* 返回队列的尾元素,如果尾节点为空则返回空
*
* @return 返回队列的尾元素,如果尾节点为空则返回空
* @since 1.6
*/
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}
/**
* 删除并返回队列的第一个元素,如果头节点为空,则返回null.
*
* @return 删除并返回队列的第一个元素,如果头节点为空,则返回null.
* @since 1.6
*/
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
/**
* 删除并返回队列的最后个元素,如果尾节点为空,则返回null.
*
* @return 删除并返回队列的最后一个元素,如果尾节点为空,则返回null.
* @since 1.6
*/
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}
/**
* 插入指定元素到栈头
*
* 此方法等价于addFirst(e)
*
* @param e 指定元素
* @since 1.6
*/
public void push(E e) {
addFirst(e);
}
/**
* 删除并返回栈头元素
*
* 此方法等价于pop()
*
* @return 返回栈头元素
* @throws NoSuchElementException 如果栈为空
* @since 1.6
*/
public E pop() {
return removeFirst();
}
/**
* 正向遍历栈,删除指定对象第一次出现时,索引对应的元素
*
* @param o 被删除的元素
* @return true 如果元素出现
* @since 1.6
*/
public boolean removeFirstOccurrence(Object o) {
return remove(o);
}
/**
* Removes the last occurrence of the specified element in this
* list (when traversing the list from head to tail). If the list
* does not contain the element, it is unchanged.
*
* @param o element to be removed from this list, if present
* @return {@code true} if the list contained the specified element
* @since 1.6
*/
public boolean removeLastOccurrence(Object o) {
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
/**
* Returns a list-iterator of the elements in this list (in proper
* sequence), starting at the specified position in the list.
* Obeys the general contract of {@code List.listIterator(int)}.<p>
*
* The list-iterator is <i>fail-fast</i>: if the list is structurally
* modified at any time after the Iterator is created, in any way except
* through the list-iterator's own {@code remove} or {@code add}
* methods, the list-iterator will throw a
* {@code ConcurrentModificationException}. Thus, in the face of
* concurrent modification, the iterator fails quickly and cleanly, rather
* than risking arbitrary, non-deterministic behavior at an undetermined
* time in the future.
*
* @param index index of the first element to be returned from the
* list-iterator (by a call to {@code next})
* @return a ListIterator of the elements in this list (in proper
* sequence), starting at the specified position in the list
* @throws IndexOutOfBoundsException {@inheritDoc}
* @see List#listIterator(int)
*/
public ListIterator<E> listIterator(int index) {
checkPositionIndex(index);
return new ListItr(index);
}
private class ListItr implements ListIterator<E> {
private Node<E> lastReturned;
private Node<E> next;
private int nextIndex;
private int expectedModCount = modCount;
ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);
nextIndex = index;
}
public boolean hasNext() {
return nextIndex < size;
}
public E next() {
checkForComodification();
if (!hasNext())
throw new NoSuchElementException();
lastReturned = next;
next = next.next;
nextIndex++;
return lastReturned.item;
}
public boolean hasPrevious() {
return nextIndex > 0;
}
public E previous() {
checkForComodification();
if (!hasPrevious())
throw new NoSuchElementException();
lastReturned = next = (next == null) ? last : next.prev;
nextIndex--;
return lastReturned.item;
}
public int nextIndex() {
return nextIndex;
}
public int previousIndex() {
return nextIndex - 1;
}
public void remove() {
checkForComodification();
if (lastReturned == null)
throw new IllegalStateException();
Node<E> lastNext = lastReturned.next;
unlink(lastReturned);
if (next == lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = null;
expectedModCount++;
}
public void set(E e) {
if (lastReturned == null)
throw new IllegalStateException();
checkForComodification();
lastReturned.item = e;
}
public void add(E e) {
checkForComodification();
lastReturned = null;
if (next == null)
linkLast(e);
else
linkBefore(e, next);
nextIndex++;
expectedModCount++;
}
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
while (modCount == expectedModCount && nextIndex < size) {
action.accept(next.item);
lastReturned = next;
next = next.next;
nextIndex++;
}
checkForComodification();
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
/**
* @since 1.6
*/
public Iterator<E> descendingIterator() {
return new DescendingIterator();
}
/**
* Adapter to provide descending iterators via ListItr.previous
*/
private class DescendingIterator implements Iterator<E> {
private final ListItr itr = new ListItr(size());
public boolean hasNext() {
return itr.hasPrevious();
}
public E next() {
return itr.previous();
}
public void remove() {
itr.remove();
}
}
@SuppressWarnings("unchecked")
private LinkedList<E> superClone() {
try {
return (LinkedList<E>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError(e);
}
}
/**
* Returns a shallow copy of this {@code LinkedList}. (The elements
* themselves are not cloned.)
*
* @return a shallow copy of this {@code LinkedList} instance
*/
public Object clone() {
LinkedList<E> clone = superClone();
// Put clone into "virgin" state
clone.first = clone.last = null;
clone.size = 0;
clone.modCount = 0;
// Initialize clone with our elements
for (Node<E> x = first; x != null; x = x.next)
clone.add(x.item);
return clone;
}
/**
* Returns an array containing all of the elements in this list
* in proper sequence (from first to last element).
*
* <p>The returned array will be "safe" in that no references to it are
* maintained by this list. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* <p>This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this list
* in proper sequence
*/
public Object[] toArray() {
Object[] result = new Object[size];
int i = 0;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item;
return result;
}
/**
* Returns an array containing all of the elements in this list in
* proper sequence (from first to last element); the runtime type of
* the returned array is that of the specified array. If the list fits
* in the specified array, it is returned therein. Otherwise, a new
* array is allocated with the runtime type of the specified array and
* the size of this list.
*
* <p>If the list fits in the specified array with room to spare (i.e.,
* the array has more elements than the list), the element in the array
* immediately following the end of the list is set to {@code null}.
* (This is useful in determining the length of the list <i>only</i> if
* the caller knows that the list does not contain any null elements.)
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose {@code x} is a list known to contain only strings.
* The following code can be used to dump the list into a newly
* allocated array of {@code String}:
*
* <pre>
* String[] y = x.toArray(new String[0]);</pre>
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the list are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose.
* @return an array containing the elements of the list
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this list
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), size);
int i = 0;
Object[] result = a;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item;
if (a.length > size)
a[size] = null;
return a;
}
private static final long serialVersionUID = 876323262645176354L;
/**
* Saves the state of this {@code LinkedList} instance to a stream
* (that is, serializes it).
*
* @serialData The size of the list (the number of elements it
* contains) is emitted (int), followed by all of its
* elements (each an Object) in the proper order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden serialization magic
s.defaultWriteObject();
// Write out size
s.writeInt(size);
// Write out all elements in the proper order.
for (Node<E> x = first; x != null; x = x.next)
s.writeObject(x.item);
}
/**
* Reconstitutes this {@code LinkedList} instance from a stream
* (that is, deserializes it).
*/
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden serialization magic
s.defaultReadObject();
// Read in size
int size = s.readInt();
// Read in all elements in the proper order.
for (int i = 0; i < size; i++)
linkLast((E)s.readObject());
}
/**
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
* and <em>fail-fast</em> {@link Spliterator} over the elements in this
* list.
*
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
* {@link Spliterator#ORDERED}. Overriding implementations should document
* the reporting of additional characteristic values.
*
* @implNote
* The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}
* and implements {@code trySplit} to permit limited parallelism..
*
* @return a {@code Spliterator} over the elements in this list
* @since 1.8
*/
@Override
public Spliterator<E> spliterator() {
return new LLSpliterator<E>(this, -1, 0);
}
/** A customized variant of Spliterators.IteratorSpliterator */
static final class LLSpliterator<E> implements Spliterator<E> {
static final int BATCH_UNIT = 1 << 10; // batch array size increment
static final int MAX_BATCH = 1 << 25; // max batch array size;
final LinkedList<E> list; // null OK unless traversed
Node<E> current; // current node; null until initialized
int est; // size estimate; -1 until first needed
int expectedModCount; // initialized when est set
int batch; // batch size for splits
LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
this.list = list;
this.est = est;
this.expectedModCount = expectedModCount;
}
final int getEst() {
int s; // force initialization
final LinkedList<E> lst;
if ((s = est) < 0) {
if ((lst = list) == null)
s = est = 0;
else {
expectedModCount = lst.modCount;
current = lst.first;
s = est = lst.size;
}
}
return s;
}
public long estimateSize() { return (long) getEst(); }
public Spliterator<E> trySplit() {
Node<E> p;
int s = getEst();
if (s > 1 && (p = current) != null) {
int n = batch + BATCH_UNIT;
if (n > s)
n = s;
if (n > MAX_BATCH)
n = MAX_BATCH;
Object[] a = new Object[n];
int j = 0;
do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
current = p;
batch = j;
est = s - j;
return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
}
return null;
}
public void forEachRemaining(Consumer<? super E> action) {
Node<E> p; int n;
if (action == null) throw new NullPointerException();
if ((n = getEst()) > 0 && (p = current) != null) {
current = null;
est = 0;
do {
E e = p.item;
p = p.next;
action.accept(e);
} while (p != null && --n > 0);
}
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer<? super E> action) {
Node<E> p;
if (action == null) throw new NullPointerException();
if (getEst() > 0 && (p = current) != null) {
--est;
E e = p.item;
current = p.next;
action.accept(e);
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
}
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}
}
下一篇: Java基础之hashMap相关知识
推荐阅读
-
dubbo源码解析(五)rpc模块服务发布
-
Laravel5 源码解析 (一)
-
thinkphp源码解析 Version 31 -2 /Lib/Core/Thinkclass
-
SpringBoot 源码解析 (三)----- Spring Boot 精髓:启动时初始化数据
-
微信跳一跳python辅助软件思路及图像识别源码解析
-
区位码输入法 PHP中实现汉字转区位码应用源码实例解析
-
JDK源码解析之 java.lang.Class
-
jstorm源码解析之bolt异常处理方法
-
从源码角度简单看StringBuilder和StringBuffer的异同(全面解析)
-
Android跑马灯MarqueeView源码解析