欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

JDK1.8源码解析-LinkedList

程序员文章站 2022-06-04 19:23:10
...

LinkedList源码解析

一封不动的源代码 + 注释

 

注意
poll()返回并删除头节点
remove()返回并删除头节点

offer(E e)添加元素到队列尾部
offerFirst( E e)插入指定元素到队列头部
offerLast( E e)插入指定元素到队列尾部

peekFirst()返回队列的头元素
peekLast()返回队列的尾元素

pollFirst()删除并返回队列的第一个元素,如果头节点为空,则返回null.
pollLast()删除并返回队列的最后个元素,如果尾节点为空,则返回null.
栈方法
push( E e)插入指定元素到栈头  =addfirst
pop()删除并返回栈头元素

LinkedList所有代码如下:



/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 */

package java.util;

import java.util.LinkedList.Node;
import java.util.function.Consumer;

/**
 * @author  Josh Bloch
 * @see     List
 * @see     ArrayList
 * @since 1.2
 * @param <E> the type of elements held in this collection
 
 LinkedList是List接口和Deque接口的双向链表实现。LinkedList实现了所有的列表操作,允许所有的元素(包括空元素)。
 所有的操作都是在对双向链表操作。
 LinkedList不是线程安全的。
 Collections.synchronizedList方法可以实现线程安全的操作。
 由iterator()和listIterator()返回的迭代器是fail-fast的。
 
 */
 
 /*
支持泛型 
AbstractSequentialList 只支持按次序访问 
DequeLinkedList可用作队列或双端队列 
clone可以调用clone()方法来返回实例的field-for-field拷贝 
Serializable:表明该类是可以序列化的。
 */
public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
	/**
	 * LinkedList节点个数
	 */
    transient int size = 0;

    /**
     * 指向头节点的指针
     * Invariant: (first == null && last == null) ||
     *            (first.prev == null && first.item != null)
     *  节点定义 补充
	    private static class Node<E> {
	        E item;
	        Node<E> next;
	        Node<E> prev;
	
	        Node(Node<E> prev, E element, Node<E> next) {
	            this.item = element;
	            this.next = next;
	            this.prev = prev;
	        }
	    }
     */
    transient Node<E> first;

    /**
     * 指向尾节点的指针
     * Invariant: (first == null && last == null) ||
     *            (last.next == null && last.item != null)
     */
    transient Node<E> last;

    /**
     * Constructs an empty list.
     */
    public LinkedList() {
    }

    /**
     * 根据指定集合c构造linkedList。先构造一个空linkedlist,在把指定集合c中的所有元素都添加到linkedList中。
     *
     * @param  c the collection whose elements are to be placed into this list
     * @throws NullPointerException if the specified collection is null
     */
    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }

    /**
     * 在表头添加元素
     */
    private void linkFirst(E e) {
        //使节点f指向原来的头结点
        final Node<E> f = first;
        //新建节点newNode,节点的前指针指向null,后指针原来的头节点
        final Node<E> newNode = new Node<>(null, e, f);
        //头指针指向新的头节点newNode 
        first = newNode;
        //如果原来的头结点为null,更新尾指针,否则使原来的头结点f的前置指针指向新的头结点newNode
        if (f == null)
            last = newNode;
        else
            f.prev = newNode;
        size++;
        modCount++;
    }

    /**
     * 在表尾插入指定元素e
     */
    void linkLast(E e) {
        //使节点l指向原来的尾结点
        final Node<E> l = last;
        //新建节点newNode,节点的前指针指向l,后指针为null
        final Node<E> newNode = new Node<>(l, e, null);
        //尾指针指向新的头节点newNode
        last = newNode;
        //如果原来的尾结点为null,更新头指针,否则使原来的尾结点l的后置指针指向新的头结点newNode
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }

    /**
     * 在指定节点succ之前插入指定元素e。指定节点succ不能为null。
     */
    void linkBefore(E e, Node<E> succ) {
        // assert succ != null;
        //获得指定节点的前驱
        final Node<E> pred = succ.prev;
        //新建节点newNode,前置指针指向pred,后置指针指向succ
        final Node<E> newNode = new Node<>(pred, e, succ);
        //succ的前置指针指向newTouch
        succ.prev = newNode;
        //如果指定节点的前驱为null,将newTouch设为头节点。否则更新pred的后置节点
        if (pred == null)
            first = newNode;
        else
            pred.next = newNode;
        size++;
        modCount++;
    }

    /**
     * 删除头结点f,并返回头结点的值
     */
    private E unlinkFirst( Node<E> f) {
        // assert f == first && f != null;
        // 保存头结点的值
        final E element = f.item;
        // 保存头结点指向的下个节点
        final Node<E> next = f.next;
        //头结点的值置为null
        f.item = null;
        //头结点的后置指针指向null
        f.next = null; // help GC
        //将头结点置为next
        first = next;
        //如果next为null,将尾节点置为null,否则将next的后置指针指向null
        if (next == null)
            last = null;
        else
            next.prev = null;
        size--;
        modCount++;
        //返回被删除的头结点的值
        return element;
    }

    /**
     * 删除尾节点l.并返回尾节点的值
     */
    private E unlinkLast(Node<E> l) {
        // assert l == last && l != null;
        // 保存尾节点的值
        final E element = l.item;
        //获取新的尾节点prev
        final Node<E> prev = l.prev;
        //旧尾节点的值置为null
        l.item = null;
        //旧尾节点的后置指针指向null
        l.prev = null; // help GC
        //将新的尾节点置为prev
        last = prev;
        //如果新的尾节点为null,头结点置为null,否则将新的尾节点的后置指针指向null
        if (prev == null)
            first = null;
        else
            prev.next = null;
        size--;
        modCount++;
        //返回被删除的尾节点的值
        return element;
    }

    /**
     * 删除指定节点,返回指定元素的值
     */
    E unlink(Node<E> x) {
        // assert x != null;
        // 保存指定节点的值
        final E element = x.item;
        // 获取指定节点的下个节点next
        final Node<E> next = x.next;
        // 获取指定节点的下个节点prev
        final Node<E> prev = x.prev;
        //如果prev为null,那么next为新的头结点,否则将prev的后置指针指向next,x的前置指针指向null
        if (prev == null) {
            first = next;
        } else {
            prev.next = next;
            x.prev = null;
        }
        //如果next为null,那么prev为新的尾结点,否则将next的前置指针指向prev,x的后置指针指向null
        if (next == null) {
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }
        //x的值置为null
        x.item = null;
        size--;
        modCount++;
        //返回被删除的节点的值
        return element;
    }

    /**
     * 返回链表中的头结点的值.
     *
     * @return 返回链表中的头结点的值
     * @throws NoSuchElementException 如果链表为空
     */
    public E getFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return f.item;
    }

    /**
     * 返回链表中的尾结点的值.
     *
     * @return 返回链表中的头结点的值
     * @throws NoSuchElementException 如果链表为空
     */
    public E getLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return l.item;
    }

    /*
     * 常用方法
     */
    
    /**
     * 删除并返回表头元素.
     *
     * @return 表头元素
     * @throws NoSuchElementException 链表为空
     */
    public E removeFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return unlinkFirst(f);
    }

    /**
     * 删除并返回表尾元素.
     *
     * @return 表尾元素
     * @throws NoSuchElementException 链表为空
     */
    public E removeLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return unlinkLast(l);
    }

    /**
     * 在表头插入指定元素.
     *
     * @param e 插入的指定元素
     */
    public void addFirst(E e) {
        linkFirst(e);
    }

    /**
     * 在表尾插入指定元素.
     * 
     * 该方法等价于add()
     *
     * @param e 插入的指定元素
     */ 
    public void addLast(E e) {
        linkLast(e);
    }

    /**
     * 判断链表是否包含指定对象o
     * @param o 指定对象
     * @return 是否包含指定对象
     */
    public boolean contains(Object o) {
        return indexOf(o) != -1;
    }

    /**
     * 返回链表元素个数
     *
     * @return 链表元素个数
     */
    public int size() {
        return size;
    }

    /**
     * 在表尾插入指定元素.
     *
     * 该方法等价于addLast
     *
     * @param e 插入的指定元素
     * @return true
     */
    public boolean add(E e) {
        linkLast(e);
        return true;
    }

    /**
     * 正向遍历链表,删除出现的第一个值为指定对象的节点
     *
     * @param o 要删除的节点置
     * @return 如果o在链表中存在,返回true
     */
    public boolean remove(Object o) {
        //遍历链表,如果o为null,删除第一个值为null的节点,返回true。如果不为null,删除第一个值为o的节点。如果链表中存在o,就返回true。
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

    /**
     * 插入指定集合到链尾
     *
     * @param c 指定集合
     * @return 如果链表改变,返回true
     * @throws NullPointerException 如果指定集合为null
     */
    public boolean addAll(Collection<? extends E> c) {
        return addAll(size, c);
    }

    /**
     * 插入指定集合到链尾的指定位置
     *
     * @param index 指定的插入位置
     * @param c 插入的指定集合
     * @return 如果链表改变,返回true
     * @throws IndexOutOfBoundsException 如果index<0或index>size
     * @throws NullPointerException 如果指定集合为null
     */
    public boolean addAll(int index, Collection<? extends E> c) {
        //检查插入的位置是否合法
        checkPositionIndex(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        if (numNew == 0)
            return false;//如果c是空的话那么就返回false

        //定义两个节点指针,指向插入点前后的节点元素
        Node<E> pred, succ;
        if (index == size) {
            succ = null;
            pred = last;
        } else {
            succ = node(index);//详见L566
            pred = succ.prev;
        }

        // 插入集合中所有元素 
        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;
            Node<E> newNode = new Node<>(pred, e, null);
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;//把前面节点指向newNode即可!
        }

        // 修改插入后的指针问题
        if (succ == null) {
            last = pred;
        } else {
            pred.next = succ;
            succ.prev = pred;
        }

        size += numNew;
        modCount++;
        return true;
    }

    /**
     * 删除链表中的所有元素
     */
    public void clear() {
        // Clearing all of the links between nodes is "unnecessary", but:
        // - helps a generational GC if the discarded nodes inhabit
        //   more than one generation
        // - is sure to free memory even if there is a reachable Iterator
        for (Node<E> x = first; x != null; ) {
            Node<E> next = x.next;
            x.item = null;
            x.next = null;
            x.prev = null;
            x = next;
        }
        first = last = null;
        size = 0;
        modCount++;
    }


    // Positional Access Operations 按位操作

    /**
     * 返回指定索引处的元素
     *
     * @param index 指定索引
     * @return 指定索引处的元素
     * @throws IndexOutOfBoundsException 如果索引index越界
     */
    public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }

    /**
     * 替换指定索引处的元素为指定元素element
     *
     * @param index 被替换的元素的索引
     * @param element 
     * @return 指定元素element
     * @throws IndexOutOfBoundsException 索引越界
     */
    public E set(int index, E element) {
        checkElementIndex(index);
        Node<E> x = node(index);
        E oldVal = x.item;
        x.item = element;
        return oldVal;
    }

    /**
     * 插入指定元素到指定索引处
     *
     * @param index 指定索引
     * @param element 指定元素
     * @throws IndexOutOfBoundsException 索引越界
     */
    public void add(int index, E element) {
        checkPositionIndex(index);

        if (index == size)
            linkLast(element);
        else
            linkBefore(element, node(index));
    }

    /**
     * 删除指定索引处的元素
     *
     * @param 指定索引
     * @return 指定索引处的元素
     * @throws IndexOutOfBoundsException 索引越界
     */
    public E remove(int index) {
        checkElementIndex(index);
        return unlink(node(index));
    }

    /**
     * 返回索引是否越界
     */
    private boolean isElementIndex(int index) {
        return index >= 0 && index < size;
    }

    /**
     * 返回插入操作时给定的索引是否合法
     */
    private boolean isPositionIndex(int index) {
        return index >= 0 && index <= size;//多了=
    }

    /**
     * 索引越界时打印的信息
     */
    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }

    /**
     * 检查索引是否越界
     */
    private void checkElementIndex(int index) {
        if (!isElementIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * 检查插入操作时给定的索引是否合法
     */
    private void checkPositionIndex(int index) {
        if (!isPositionIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * 返回在指定索引处的非空元素
     */
    Node<E> node(int index) {
        // assert isElementIndex(index);

        if (index < (size >> 1)) {//从头到尾还是从尾到头遍历
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

    // Search Operations 查找操作

    /**
     * 正向遍历链表,返回指定元素第一次出现时的索引。如果元素没有出现,返回-1.
     * 
     * @param o 需要查找的元素
     * @return 指定元素第一次出现时的索引。如果元素没有出现,返回-1。
     */
    public int indexOf(Object o) {
        int index = 0;
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null)
                    return index;
                index++;
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item))
                    return index;
                index++;
            }
        }
        return -1;
    }

    /**
     * 逆向遍历链表,返回指定元素第一次出现时的索引。如果元素没有出现,返回-1.
     * 
     * @param o 需要查找的元素
     * @return 指定元素第一次出现时的索引。如果元素没有出现,返回-1。
     */
    public int lastIndexOf(Object o) {
        int index = size;
        if (o == null) {
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (x.item == null)
                    return index;
            }
        } else {
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (o.equals(x.item))
                    return index;
            }
        }
        return -1;
    }

    // Queue operations.

    /**
     * 返回头节点的元素,如果链表为空则返回null
     *
     * @return 返回头节点的元素,如果链表为空则返回null
     * @since 1.5
     */
    public E peek() {
        final Node<E> f = first;
        return (f == null) ? null : f.item;
    }

    /**
     * 获取表头节点的值,头节点为空抛出异常
     *
     * @return 获取表头节点的值
     * @throws NoSuchElementException 如果链表为空
     * @since 1.5
     */
    public E element() {
        return getFirst();
    }

    /**
     * 返回并删除头节点,如果链表为空则返回null
     *
     * @return 返回并删除头节点,如果链表为空则返回null
     * @since 1.5
     */
    public E poll() {
        final Node<E> f = first;
        return (f == null) ? null : unlinkFirst(f);
    }

    /**
     * 删除并返回头节点,如果链表为空,抛出异常
     *
     * @return 头结点
     * @throws NoSuchElementException 链表为空
     * @since 1.5
     */
    public E remove() {
        return removeFirst();
    }

    /**
     * 添加元素到队列尾部
     *
     * @param e 指定元素
     * @return 
     * @since 1.5
     */
    public boolean offer(E e) {
        return add(e);
    }

    // Deque operations 双向队列操作
    /**
     * 插入指定元素到队列头部.
     *
     * @param e 插入的元素
     * @return  true
     * @since 1.6
     */
    public boolean offerFirst(E e) {
        addFirst(e);
        return true;
    }

    /**
     * 插入指定元素到队列尾部.
     *
     * @param e 插入的元素
     * @return  true
     * @since 1.6
     */
    public boolean offerLast(E e) {
        addLast(e);
        return true;
    }

    /**
    * 返回队列的头元素,如果头节点为空则返回空
    *
    * @return 返回队列的头元素,如果头节点为空则返回空
    * @since 1.6
    */
    public E peekFirst() {
       final Node<E> f = first;
       return (f == null) ? null : f.item;
    }

    /**
    * 返回队列的尾元素,如果尾节点为空则返回空
    *
    * @return 返回队列的尾元素,如果尾节点为空则返回空
    * @since 1.6
    */
    public E peekLast() {
        final Node<E> l = last;
        return (l == null) ? null : l.item;
    }

    /**
     * 删除并返回队列的第一个元素,如果头节点为空,则返回null.
     *
     * @return 删除并返回队列的第一个元素,如果头节点为空,则返回null.
     * @since 1.6
     */
    public E pollFirst() {
        final Node<E> f = first;
        return (f == null) ? null : unlinkFirst(f);
    }

    /**
     * 删除并返回队列的最后个元素,如果尾节点为空,则返回null.
     *
     * @return 删除并返回队列的最后一个元素,如果尾节点为空,则返回null.
     * @since 1.6
     */
    public E pollLast() {
        final Node<E> l = last;
        return (l == null) ? null : unlinkLast(l);
    }

    /**
     * 插入指定元素到栈头
     *
     * 此方法等价于addFirst(e)
     *
     * @param e 指定元素
     * @since 1.6
     */
    public void push(E e) {
        addFirst(e);
    }

    /**
     * 删除并返回栈头元素
     *
     * 此方法等价于pop()
     *
     * @return 返回栈头元素
     * @throws NoSuchElementException 如果栈为空
     * @since 1.6
     */
    public E pop() {
        return removeFirst();
    }

    /**
     * 正向遍历栈,删除指定对象第一次出现时,索引对应的元素
     * 
     * @param o 被删除的元素
     * @return true 如果元素出现
     * @since 1.6
     */
    public boolean removeFirstOccurrence(Object o) {
        return remove(o);
    }

    /**
     * Removes the last occurrence of the specified element in this
     * list (when traversing the list from head to tail).  If the list
     * does not contain the element, it is unchanged.
     *
     * @param o element to be removed from this list, if present
     * @return {@code true} if the list contained the specified element
     * @since 1.6
     */
    public boolean removeLastOccurrence(Object o) {
        if (o == null) {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

    /**
     * Returns a list-iterator of the elements in this list (in proper
     * sequence), starting at the specified position in the list.
     * Obeys the general contract of {@code List.listIterator(int)}.<p>
     *
     * The list-iterator is <i>fail-fast</i>: if the list is structurally
     * modified at any time after the Iterator is created, in any way except
     * through the list-iterator's own {@code remove} or {@code add}
     * methods, the list-iterator will throw a
     * {@code ConcurrentModificationException}.  Thus, in the face of
     * concurrent modification, the iterator fails quickly and cleanly, rather
     * than risking arbitrary, non-deterministic behavior at an undetermined
     * time in the future.
     *
     * @param index index of the first element to be returned from the
     *              list-iterator (by a call to {@code next})
     * @return a ListIterator of the elements in this list (in proper
     *         sequence), starting at the specified position in the list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     * @see List#listIterator(int)
     */
    public ListIterator<E> listIterator(int index) {
        checkPositionIndex(index);
        return new ListItr(index);
    }

    private class ListItr implements ListIterator<E> {
        private Node<E> lastReturned;
        private Node<E> next;
        private int nextIndex;
        private int expectedModCount = modCount;

        ListItr(int index) {
            // assert isPositionIndex(index);
            next = (index == size) ? null : node(index);
            nextIndex = index;
        }

        public boolean hasNext() {
            return nextIndex < size;
        }

        public E next() {
            checkForComodification();
            if (!hasNext())
                throw new NoSuchElementException();

            lastReturned = next;
            next = next.next;
            nextIndex++;
            return lastReturned.item;
        }

        public boolean hasPrevious() {
            return nextIndex > 0;
        }

        public E previous() {
            checkForComodification();
            if (!hasPrevious())
                throw new NoSuchElementException();

            lastReturned = next = (next == null) ? last : next.prev;
            nextIndex--;
            return lastReturned.item;
        }

        public int nextIndex() {
            return nextIndex;
        }

        public int previousIndex() {
            return nextIndex - 1;
        }

        public void remove() {
            checkForComodification();
            if (lastReturned == null)
                throw new IllegalStateException();

            Node<E> lastNext = lastReturned.next;
            unlink(lastReturned);
            if (next == lastReturned)
                next = lastNext;
            else
                nextIndex--;
            lastReturned = null;
            expectedModCount++;
        }

        public void set(E e) {
            if (lastReturned == null)
                throw new IllegalStateException();
            checkForComodification();
            lastReturned.item = e;
        }

        public void add(E e) {
            checkForComodification();
            lastReturned = null;
            if (next == null)
                linkLast(e);
            else
                linkBefore(e, next);
            nextIndex++;
            expectedModCount++;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            while (modCount == expectedModCount && nextIndex < size) {
                action.accept(next.item);
                lastReturned = next;
                next = next.next;
                nextIndex++;
            }
            checkForComodification();
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

    /**
     * @since 1.6
     */
    public Iterator<E> descendingIterator() {
        return new DescendingIterator();
    }

    /**
     * Adapter to provide descending iterators via ListItr.previous
     */
    private class DescendingIterator implements Iterator<E> {
        private final ListItr itr = new ListItr(size());
        public boolean hasNext() {
            return itr.hasPrevious();
        }
        public E next() {
            return itr.previous();
        }
        public void remove() {
            itr.remove();
        }
    }

    @SuppressWarnings("unchecked")
    private LinkedList<E> superClone() {
        try {
            return (LinkedList<E>) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError(e);
        }
    }

    /**
     * Returns a shallow copy of this {@code LinkedList}. (The elements
     * themselves are not cloned.)
     *
     * @return a shallow copy of this {@code LinkedList} instance
     */
    public Object clone() {
        LinkedList<E> clone = superClone();

        // Put clone into "virgin" state
        clone.first = clone.last = null;
        clone.size = 0;
        clone.modCount = 0;

        // Initialize clone with our elements
        for (Node<E> x = first; x != null; x = x.next)
            clone.add(x.item);

        return clone;
    }

    /**
     * Returns an array containing all of the elements in this list
     * in proper sequence (from first to last element).
     *
     * <p>The returned array will be "safe" in that no references to it are
     * maintained by this list.  (In other words, this method must allocate
     * a new array).  The caller is thus free to modify the returned array.
     *
     * <p>This method acts as bridge between array-based and collection-based
     * APIs.
     *
     * @return an array containing all of the elements in this list
     *         in proper sequence
     */
    public Object[] toArray() {
        Object[] result = new Object[size];
        int i = 0;
        for (Node<E> x = first; x != null; x = x.next)
            result[i++] = x.item;
        return result;
    }

    /**
     * Returns an array containing all of the elements in this list in
     * proper sequence (from first to last element); the runtime type of
     * the returned array is that of the specified array.  If the list fits
     * in the specified array, it is returned therein.  Otherwise, a new
     * array is allocated with the runtime type of the specified array and
     * the size of this list.
     *
     * <p>If the list fits in the specified array with room to spare (i.e.,
     * the array has more elements than the list), the element in the array
     * immediately following the end of the list is set to {@code null}.
     * (This is useful in determining the length of the list <i>only</i> if
     * the caller knows that the list does not contain any null elements.)
     *
     * <p>Like the {@link #toArray()} method, this method acts as bridge between
     * array-based and collection-based APIs.  Further, this method allows
     * precise control over the runtime type of the output array, and may,
     * under certain circumstances, be used to save allocation costs.
     *
     * <p>Suppose {@code x} is a list known to contain only strings.
     * The following code can be used to dump the list into a newly
     * allocated array of {@code String}:
     *
     * <pre>
     *     String[] y = x.toArray(new String[0]);</pre>
     *
     * Note that {@code toArray(new Object[0])} is identical in function to
     * {@code toArray()}.
     *
     * @param a the array into which the elements of the list are to
     *          be stored, if it is big enough; otherwise, a new array of the
     *          same runtime type is allocated for this purpose.
     * @return an array containing the elements of the list
     * @throws ArrayStoreException if the runtime type of the specified array
     *         is not a supertype of the runtime type of every element in
     *         this list
     * @throws NullPointerException if the specified array is null
     */
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            a = (T[])java.lang.reflect.Array.newInstance(
                                a.getClass().getComponentType(), size);
        int i = 0;
        Object[] result = a;
        for (Node<E> x = first; x != null; x = x.next)
            result[i++] = x.item;

        if (a.length > size)
            a[size] = null;

        return a;
    }

    private static final long serialVersionUID = 876323262645176354L;

    /**
     * Saves the state of this {@code LinkedList} instance to a stream
     * (that is, serializes it).
     *
     * @serialData The size of the list (the number of elements it
     *             contains) is emitted (int), followed by all of its
     *             elements (each an Object) in the proper order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        // Write out any hidden serialization magic
        s.defaultWriteObject();

        // Write out size
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (Node<E> x = first; x != null; x = x.next)
            s.writeObject(x.item);
    }

    /**
     * Reconstitutes this {@code LinkedList} instance from a stream
     * (that is, deserializes it).
     */
    @SuppressWarnings("unchecked")
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in any hidden serialization magic
        s.defaultReadObject();

        // Read in size
        int size = s.readInt();

        // Read in all elements in the proper order.
        for (int i = 0; i < size; i++)
            linkLast((E)s.readObject());
    }

    /**
     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
     * list.
     *
     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
     * {@link Spliterator#ORDERED}.  Overriding implementations should document
     * the reporting of additional characteristic values.
     *
     * @implNote
     * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}
     * and implements {@code trySplit} to permit limited parallelism..
     *
     * @return a {@code Spliterator} over the elements in this list
     * @since 1.8
     */
    @Override
    public Spliterator<E> spliterator() {
        return new LLSpliterator<E>(this, -1, 0);
    }

    /** A customized variant of Spliterators.IteratorSpliterator */
    static final class LLSpliterator<E> implements Spliterator<E> {
        static final int BATCH_UNIT = 1 << 10;  // batch array size increment
        static final int MAX_BATCH = 1 << 25;  // max batch array size;
        final LinkedList<E> list; // null OK unless traversed
        Node<E> current;      // current node; null until initialized
        int est;              // size estimate; -1 until first needed
        int expectedModCount; // initialized when est set
        int batch;            // batch size for splits

        LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
            this.list = list;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getEst() {
            int s; // force initialization
            final LinkedList<E> lst;
            if ((s = est) < 0) {
                if ((lst = list) == null)
                    s = est = 0;
                else {
                    expectedModCount = lst.modCount;
                    current = lst.first;
                    s = est = lst.size;
                }
            }
            return s;
        }

        public long estimateSize() { return (long) getEst(); }

        public Spliterator<E> trySplit() {
            Node<E> p;
            int s = getEst();
            if (s > 1 && (p = current) != null) {
                int n = batch + BATCH_UNIT;
                if (n > s)
                    n = s;
                if (n > MAX_BATCH)
                    n = MAX_BATCH;
                Object[] a = new Object[n];
                int j = 0;
                do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
                current = p;
                batch = j;
                est = s - j;
                return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
            }
            return null;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            Node<E> p; int n;
            if (action == null) throw new NullPointerException();
            if ((n = getEst()) > 0 && (p = current) != null) {
                current = null;
                est = 0;
                do {
                    E e = p.item;
                    p = p.next;
                    action.accept(e);
                } while (p != null && --n > 0);
            }
            if (list.modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }

        public boolean tryAdvance(Consumer<? super E> action) {
            Node<E> p;
            if (action == null) throw new NullPointerException();
            if (getEst() > 0 && (p = current) != null) {
                --est;
                E e = p.item;
                current = p.next;
                action.accept(e);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }

        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }

}
















 

相关标签: Java java