欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

HashMap源码分析-基于jdk1.8

程序员文章站 2022-06-04 19:23:22
...

HashMap


  1. 初始化

描述 Hashmap构造方法一公共有4个,分别如下
/**
* 无参构造
*/
public HashMap() {
        //默认的加载因子 0.75
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

 /**
 * 给定初始容量
 * @param initialCapacity
 */
public HashMap(int initialCapacity) {
    /*指定集合初始容量 加载因子按照默认的来 0.75f*/
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

/**
 * 指定初始容量和加载因子
 * @param initialCapacity
 * @param loadFactor
 */
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

/**
 * 基于已有的集合构建
 * @param m
 */
public HashMap(Map<? extends K, ? extends V> m) {
    /*默认的加载因子*/
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);
}

2.添加元素

描述 相对于查找来说要复杂很多

/**
 * 获取key的hash值
 * @param key
 * @return
 */
static final int hash(Object key) {
    int h;
    //key为null时 hash值为0 取key对应的hashcode  异或上 h无符号右移16位,为了防止实现较差的hashcode
    // 产生较大的碰撞概率,这里会对hash值做一个移位,让自己的高位和低位做异或,以此来加大hash值得随机性
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

/**
 * 在map中加入元素
 * @param key
 * @param value
 * @return
 */
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

/**
 *
 * @param hash 元素的hash值
 * @param key 添加的数据的key
 * @param value 添加的数据的值
 * @param onlyIfAbsent 是否覆盖已存在的value
 * @param evict
 * @return
 */
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab;
    Node<K,V> p;
    int n, i;

    /*这种情况说明集合刚刚初始化,还没有任何元素*/
    if ((tab = table) == null || (n = tab.length) == 0)
        //加入第一个元素的时候,需要初始化下
        n = (tab = resize()).length;
    /*这种情况说明数组对应的位置还没有数据,没有出现hash碰撞 直接将元素存入即可*/
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        /*进来说明数据已经在数组这个位置发生了碰撞,需要将元素添加到链表或者红黑树中*/
        Node<K,V> e; K k;
        /*这种说明存在相同的key,需要对旧值做是否覆盖处理*/
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        /*说明链表已经转成了红黑树,需要将数据插入到红黑树中*/
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            /*对链表一直循环 直到后继节点为空为止*/
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    /*找到链表的尾部后 将新的数据构造成新的节点,插入到尾部*/
                    p.next = newNode(hash, key, value, null);
                    /*如果链表长度达到阈值,就转成红黑树*/
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                /*key已存在则退出,对value做是否覆盖处理*/
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        /*e不为空说明key已经存在*/
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            /*如果onlyIfAbsent为false 则可以将新值覆盖旧值*/
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    /*元素个数超过阈值 则需要扩容*/
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

//重新计算数组大小
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    //如果旧的容量大于0
    if (oldCap > 0) {
        //如果容量值大于最大容量值,则将阈值设置为最大值
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            //无法扩容啦 直接返回旧的数组
            return oldTab;
        }
        //设置新的容量为原容量的两倍 如果扩容两倍小于最大值,且 旧的值大于出事默认值 则设置新的threshold为旧值得两倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        //设置旧的阈值为新的容量
        newCap = oldThr;
    else {
        // zero initial threshold signifies using defaults
        //初始化为默认的容量与阈值 16 ,12
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    //初始化一个新容量的数组
    @SuppressWarnings({"rawtypes","unchecked"})
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    //如果是多线程 这里肯定有问题 将新的数组赋值给数据存储的table
    table = newTab;
    if (oldTab != null) {
        //如果原来有值,这里需要处理,并把值拷贝到新数组里面
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            //获取数组元素e
            if ((e = oldTab[j]) != null) {
                //原数组数据置空,可以垃圾回收原数组,要不让有可达的引用,无法回收
                oldTab[j] = null;
                if (e.next == null)
                    //最简单的情况,没有后续的碰撞元素,直接赋值即可,rehash
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    //如果是treeNode的节点
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

/*构造一个链表节点的构造函数*/
Node(int hash, K key, V value, Node<K,V> next) {
    /*key对应的hash值*/
    this.hash = hash;
    /*key*/
    this.key = key;
    /*value*/
    this.value = value;
    /*后继节点*/
    this.next = next;
}

3.查找元素

描述

4.移除元素

描述

/**
 * 查找元素
 * @param key
 * @return
 */
public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

/**
 * Implements Map.get and related methods
 *
 * @param hash hash for key
 * @param key the key
 * @return the node, or null if none
 */
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    /*数组不为空 并且 数组长度大于零 并且 根据hash算法定位到的数组内的链表的头元素不为空*/
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        /*首节点是key对应的值则直接返回*/
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
            /*如果是红黑树节点,则在红黑树中查找*/
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                /*遍历链表,查找元素*/
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

4.移除元素

描述 相对于查找来说要复杂很多,但是不需要考虑扩容

/**
 * Removes the mapping for the specified key from this map if present.
 *
 * @param  key key whose mapping is to be removed from the map
 * @return the previous value associated with <tt>key</tt>, or
 *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 *         (A <tt>null</tt> return can also indicate that the map
 *         previously associated <tt>null</tt> with <tt>key</tt>.)
 */
public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}

/**
 * Implements Map.remove and related methods
 *
 * @param hash hash for key
 * @param key the key
 * @param value the value to match if matchValue, else ignored
 * @param matchValue if true only remove if value is equal
 * @param movable if false do not move other nodes while removing
 * @return the node, or null if none
 */
final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    /*数组不为空 并且 数组长度大于零 并且 根据hash算法定位到的数组内的链表的头元素不为空*/
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        /*首节点*/
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {
            /*在红黑树中找到节点*/
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                /*遍历链表找到节点*/
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                /*从红黑树中移除节点*/
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                /*如果移除的是头结点,则将数组中元素指向移除元素的后继节点*/
                tab[index] = node.next;
            else
                /*将移除节点的前驱节点的后继节点设置为移除节点的后继节点*/
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}