欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

python之股票数据分析

程序员文章站 2022-06-04 17:15:01
...

一、初识Pandas

Pandas 是基于 NumPy 的一个非常好用的库,它有两种自己独有的基本数据结构Series (一维)和 DataFrame(二维),它们让数据操作更简单了。虽然Pandas有着两种数据结构,但它依然是 Python 的一个库,所以,Python 中有的数据类型在这里依然适用,也同样还可以使用类自己定义数据类型。

在金融数据分析领域,Pandas更是起到了非常重要的作用,比如用于量化交易。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具,对于亿级的数据处理也如鱼得水。

二、Pandas基本操作

1、Series的创建
Series的创建主要有三种方式:

1)通过一维数组创建Series
import numpy as npimport pandas as pd#创建一维数组a = np.arange(10)
print(a)
s = pd.Series(a)
print(s)

输出如下:


python之股票数据分析

2)通过字典的方式创建Series
import numpy as npimport pandas as pd#创建字典d = {'a':1,'b':2,'c':3,'d':4,'e':5}
print(d)

s = pd.Series(d)
print(s)

输出如下:



3)通过DataFrame中的某一行或某一列创建Series

参考下面DataFrame第三种创建方式中的s = df3['one']。

2、DataFrame的创建

DataFrame的创建主要有三种方式:

1)通过二维数组创建DataFrame
import numpy as npimport pandas as pd#创建二维数组a = np.array(np.arange(12)).reshape(3,4)
print(a)

df1 = pd.DataFrame(a)
print(df1)

输出如下:



2)通过字典的方式创建DataFrame

以下以两种字典来创建数据框,一个是字典列表,一个是嵌套字典。

import numpy as npimport pandas as pd

d1 = {'a':[1,2,3,4],'b':[5,6,7,8],'c':[9,10,11,12],'d':[14,14,15,16]}
print(d1)

df1 = pd.DataFrame(d1)
print(df1)

d2 = {'one':{'a':1,'b':2,'c':3,'d':4},'two':{'a':5,'b':6,'c':7,'d':8},'three':{'a':9,'b':10,'c':11,'d':12}}
print(d2)

df2 = pd.DataFrame(d2)
print(df2)

输出如下:



3)通过DataFrame的方式创建DataFrame

我们取出2)中的df2来创建df3

df2 = pd.DataFrame(d2)print(df2)

df3 = df2[['one','two']]print(df3)

s = df3['one']print(s)

输出如下:



三、处理股票数据

接下来,我们通过实例来学习Pandas在处理股票数据上的应用。
我们使用pandas_datareader来获取阿里巴巴的股票数据。

1)导入以下库:
import pandas as pdimport pandas_datareader.data as web#绘图使用import matplotlib.pyplot as plt#获取时间使用import datetime
2)设置股票名称和时间参数
name = "BABA"start = datetime.datetime(2015,1,1)end = datetime.date.today()
3)获取股票数据
prices = web.DataReader(name, "google", start, end)
4)查看prices的类型
print(type(prices))

打印如下:

<class 'pandas.core.frame.DataFrame'>

可以看到返回的数据类型就是DataFrame类型。

5)查看股票的摘要信息
print(prices.describe()

打印 如下:

             Open        High         Low       Close        Volumecount  791.000000  791.000000  792.000000  792.000000  7.920000e+02mean   106.632099  107.793186  105.355164  106.614520  1.610571e+07std     38.191772   38.539981   37.719848   38.156416  9.941683e+06min     57.300000   58.650000   57.200000   57.390000  2.457439e+06
25%     79.855000   80.945000   79.157500   79.935000  1.003487e+07
50%     91.000000   91.740000   89.925000   90.705000  1.350020e+07
75%    119.315000  120.400000  118.462500  120.205000  1.879724e+07max    204.830000  206.200000  202.800000  205.220000  9.704593e+07

再来打印最新的三条信息

print(prices.tail(3))
              Open    High     Low   Close    VolumeDate                                                2018-02-21  189.37  193.17  188.46  188.82  22071585
2018-02-22  190.20  190.74  187.77  188.75  12282843
2018-02-23  190.18  193.40  189.95  193.29  16937275
6)绘图

我们将阿里巴巴的股票数据按照开盘价绘图。

plt.plot(prices.index, prices["Open"])plt.show()

python之股票数据分析


从图中我们可以看到阿里巴巴的股票一路攀升,细心点发现每年的11月都有一个高点。

四、总结

Pandas是以NumPy和Matplotlib为基础封装的金融数据分析的库,对于量化交易十分有用,通过可视化的效果能帮我们一定程度分析股市的走向。

相关标签: python 股票