禁忌搜索算法的实现_Python
程序员文章站
2022-06-04 15:44:40
...
前言
最近想做关于接口用例自动生成,需要参数组合,就开始看算法。正好看到禁忌搜素算法,网上找了一些内容,python实现的会偏少,且实现的内容都存在较大缺陷。于是自己试着写了一下,分享一下。参考文章:
https://blog.csdn.net/adkjb/article/details/81712969
https://www.cnblogs.com/yjphhw/p/9700499.html
算法实现
数据直接采用参考文章里的数据,上代码:
import copy,random,datetime
import matplotlib.pyplot as plt
city_list = [[1, (1150.0, 1760.0)], [2, (630.0, 1660.0)], [3, (40.0, 2090.0)], [4,(750.0, 1100.0)],
[5, (750.0, 2030.0)], [6, (1030.0, 2070.0)], [7, (1650.0, 650.0)], [8, (1490.0, 1630.0)],
[9, (790.0, 2260.0)], [10, (710.0, 1310.0)], [11, (840.0, 550.0)], [12, (1170.0, 2300.0)],
[13, (970.0, 1340.0)], [14, (510.0, 700.0)], [15, (750.0, 900.0)], [16, (1280.0, 1200.0)],
[17,(230.0, 590.0)], [18, (460.0, 860.0)], [19, (1040.0, 950.0)], [20, (590.0, 1390.0)],
[21, (830.0, 1770.0)], [22, (490.0, 500.0)], [23, (1840.0, 1240.0)], [24, (1260.0, 1500.0)],
[25, (1280.0, 790.0)], [26, (490.0, 2130.0)], [27, (1460.0, 1420.0)], [28, (1260.0, 1910.0)],
[29, (360.0, 1980.0)]
]
class Taboo_search:
def __init__(self,city_list,is_random = True):
self.city_list = city_list #城市列表
self.candidate_count = 100 #候选集合长度
self.taboo_list_length = 10
self.iteration_count = 100 #迭代次数
self.min_route,self.min_cost = self.random_first_full_road() if is_random else self.greedy_first_full_road()
self.taboo_list = []
#计算两城市间的距离
def city_distance(self,city1,city2):
distance = ( (float(city1[1][0] - city2[1][0]))**2 + (float(city1[1][1] - city2[1][1]))**2 )**0.5
return distance
#获取当前城市邻居城市中距离最短的一个
def next_shotest_road(self,city1,other_cities):
tmp_min = 999999
tmp_next = None
for i in range(0,len(other_cities)):
distance = self.city_distance(city1,other_cities[i])
#print(distance)
if distance < tmp_min:
tmp_min = distance
tmp_next = other_cities[i]
return tmp_next,tmp_min
#随机生成初始线路
def random_first_full_road(self):
cities = copy.deepcopy(self.city_list)
cities.remove(cities[0])
route = copy.deepcopy(cities)
random.shuffle(route)
cost = self.route_cost(route)
return route,cost
#根据贪婪算法获取初始线路
def greedy_first_full_road(self):
remain_city = copy.deepcopy(self.city_list)
current_city = remain_city[0]
road_list = []
remain_city.remove(current_city)
all_distance = 0
while len(remain_city) > 0:
next_city,distance = self.next_shotest_road(current_city,remain_city)
all_distance += distance
road_list.append(next_city)
remain_city.remove(next_city)
current_city = next_city
all_distance += self.city_distance(self.city_list[0],road_list[-1])
return road_list,round(all_distance,2)
#随机交换2个城市位置
def random_swap_2_city(self,route):
#print(route)
road_list = copy.deepcopy(route)
two_rand_city = random.sample(road_list,2)
#print(two_rand_city)
index_a = road_list.index(two_rand_city[0])
index_b = road_list.index(two_rand_city[1])
road_list[index_a] = two_rand_city[1]
road_list[index_b] = two_rand_city[0]
return road_list,sorted(two_rand_city)
#计算线路路径长度
def route_cost(self,route ):
road_list = copy.deepcopy(route)
current_city = self.city_list[0]
while current_city in road_list:
road_list.remove(current_city)
all_distance = 0
while len(road_list) > 0 :
distance = self.city_distance(current_city,road_list[0])
all_distance += distance
current_city = road_list[0]
road_list.remove(current_city)
all_distance += self.city_distance(current_city,self.city_list[0])
return round(all_distance,2)
#获取下一条线路
def single_search(self,route):
#生成候选集合列表和其对应的移动列表
candidate_list = []
candidate_move_list = []
while len(candidate_list) < self.candidate_count:
tmp_route,tmp_move = self.random_swap_2_city(route)
#print("tmp_route:",tmp_route)
if tmp_route not in candidate_list:
candidate_list.append(tmp_route)
candidate_move_list.append(tmp_move)
#计算候选集合各路径的长度
candidate_cost_list = []
for candidate in candidate_list:
candidate_cost_list.append(self.route_cost(candidate))
#print(candidate_list)
min_candidate_cost = min(candidate_cost_list) #候选集合中最短路径
min_candidate_index = candidate_cost_list.index(min_candidate_cost)
min_candidate = candidate_list[min_candidate_index] #候选集合中最短路径对应的线路
move_city = candidate_move_list[min_candidate_index]
if min_candidate_cost < self.min_cost:
self.min_cost = min_candidate_cost
self.min_route = min_candidate
if move_city in self.taboo_list: #藐视法则,当此移动导致的值更优,则无视该禁忌列表
self.taboo_list.remove(move_city)
if len(self.taboo_list) >= self.taboo_list_length: #判断该禁忌列表长度是否以达到限制,是的话移除最初始的move
self.taboo_list.remove(self.taboo_list[0])
self.taboo_list.append(move_city) #将该move加入到禁忌列表
return min_candidate
else:
#当未找到更优路径时,选择次优路线,如果该次优路线在禁忌表里,则更次一层,依次类推,找到一条次优路线
if move_city in self.taboo_list:
tmp_min_candidate = min_candidate
tmp_move_city = move_city
while move_city in self.taboo_list:
candidate_list.remove(min_candidate)
candidate_cost_list.remove(min_candidate_cost)
candidate_move_list.remove(move_city)
min_candidate_cost = min(candidate_cost_list) # 候选集合中最短路径
min_candidate_index = candidate_cost_list.index(min_candidate_cost)
min_candidate = candidate_list[min_candidate_index] # 候选集合中最短路径对应的线路
move_city = candidate_move_list[min_candidate_index]
if len(candidate_list) < 10: #防止陷入死循环,在候选集个数小于10的时候跳出
min_candidate = tmp_min_candidate
move_city = tmp_move_city
if len(self.taboo_list) >= self.taboo_list_length: # 判断该禁忌列表长度是否以达到限制,是的话移除最初始的move
self.taboo_list.remove(self.taboo_list[0])
self.taboo_list.append(move_city)
return min_candidate
#进行taboo_search直到达到终止条件:循环100次
def taboo_search(self):
route = copy.deepcopy(self.min_route)
for i in range(self.iteration_count):
route = self.single_search(route)
new_route = [self.city_list[0]]
new_route.extend(self.min_route)
new_route.append(self.city_list[0]) #前后插入首个城市信息
return new_route,self.min_cost
#画线路图
def draw_line_pic(route,cost,duration,desc):
x = []
y = []
for item in route:
x.append(item[1][0])
y.append(item[1][1])
x0 = [x[0],]
y0 = [y[0],]
plt.plot(x,y)
plt.scatter(x0,y0,marker="o",c="r")
for a, b in zip(x0, y0):
plt.text(a, b, (a, b), ha='center', va='bottom', fontsize=10)
plt.title("Taboo_Search("+desc +": "+ str(cost) + ")")
plt.show()
if __name__ == "__main__":
ts_random = Taboo_search(city_list)
ts_greedy = Taboo_search(city_list,is_random=False)
start_time1 = datetime.datetime.now()
route_random,cost_random = ts_random.taboo_search()
end_time1 = datetime.datetime.now()
duration1 = (end_time1 - start_time1).seconds
route_greedy,cost_greedy = ts_greedy.taboo_search()
end_time2 = datetime.datetime.now()
duration2 = (end_time2 - end_time1).seconds
draw_line_pic(route_random,cost_random,duration1,"random")
draw_line_pic(route_greedy,cost_greedy,duration2,"greedy")
说明:关于初始线路,上面有两种方式,一种是用贪婪算法,一种是随机算法(看的文章全都用的随机)。
结果分析
贪婪算法初始值:最小路径-9598.07
随机算法初始值:最小路径-10253.58
当然,这是其中一次结果,可以看到贪婪算法找到的结果会更好。
针对这个问题,经过多次实验,发现随机初始线路具有较大的波动范围,且结果往往劣于贪婪算法初始线路
。
分别计算10次的数据:第一轮
:可以看到随机初始线路大部分都劣于贪婪初始线路,波动范围大,且最终最短路径劣于贪婪算法结果。第二轮
:结果同上第三轮
:结果同上第四轮
:基本同上,但是最终最优值会小于贪婪算法,不过相差很小。第五轮
:同前三轮
从上基本可以看出贪婪算法初始路线在大部分情况下具有较大的优势。
上一篇: MySQL遭遇DELETE误操作的回滚
下一篇: 贪心算法思想和例题讲解