欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

数据结构与算法10-冒泡排序、插入排序、选择排序

程序员文章站 2022-06-04 12:46:52
...

排序对于任何一个程序员来说,可能都不会陌生。你学的第一个算法,可能就是排序。大部分编程语言中,也都提供了排序函数。在平常的项目中,我们也经常会用到排序。排序非常重要,所以我会花多一点时间来详细讲一讲经典的排序算法。

排序算法太多了,有很多可能你连名字都没听说过,比如猴子排序、睡眠排序、面条排序等。我只讲众多排序算法中的一小撮,也是最经典的、最常用的:冒泡排序、插入排序、选择排序、归并排序、快速排序、计数排序、基数排序、桶排序。我按照时间复杂度把它们分成了三类,分三节课来讲解。

数据结构与算法10-冒泡排序、插入排序、选择排序

带着问题去学习,是最有效的学习方法。所以按照惯例,我还是先给你出一个思考题:插入排序和冒泡排序的时间复杂度相同,都是 O(n2),在实际的软件开发里,为什么我们更倾向于使用插入排序算法而不是冒泡排序算法呢?

你可以先思考一两分钟,带着这个问题,我们开始今天的内容!

如何分析一个“排序算法”?

学习排序算法,我们除了学习它的算法原理、代码实现之外,更重要的是要学会如何评价、分析一个排序算法。那分析一个排序算法,要从哪几个方面入手呢?

排序算法的执行效率

对于排序算法执行效率的分析,我们一般会从这几个方面来衡量:

1. 最好情况、最坏情况、平均情况时间复杂度

我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,你还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。

为什么要区分这三种时间复杂度呢?第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。

2. 时间复杂度的系数、常数 、低阶

我们知道,时间复杂度反应的是数据规模 n 很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。

3. 比较次数和交换(或移动)次数

这一节和下一节讲的都是基于比较的排序算法。基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。

排序算法的内存消耗

我们前面讲过,算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。我们今天讲的三种排序算法,都是原地排序算法。

排序算法的稳定性

仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,我们还有一个重要的度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。

我通过一个例子来解释一下。比如我们有一组数据 2,9,3,4,8,3,按照大小排序之后就是 2,3,3,4,8,9。

这组数据里有两个 3。经过某种排序算法排序之后,如果两个 3 的前后顺序没有改变,那我们就把这种排序算法叫作稳定的排序算法;如果前后顺序发生变化,那对应的排序算法就叫作不稳定的排序算法

你可能要问了,两个 3 哪个在前,哪个在后有什么关系啊,稳不稳定又有什么关系呢?为什么要考察排序算法的稳定性呢?

很多数据结构和算法课程,在讲排序的时候,都是用整数来举例,但在真正软件开发中,我们要排序的往往不是单纯的整数,而是一组对象,我们需要按照对象的某个 key 来排序。

比如说,我们现在要给电商交易系统中的“订单”排序。订单有两个属性,一个是下单时间,另一个是订单金额。如果我们现在有 10 万条订单数据,我们希望按照金额从小到大对订单数据排序。对于金额相同的订单,我们希望按照下单时间从早到晚有序。对于这样一个排序需求,我们怎么来做呢?

最先想到的方法是:我们先按照金额对订单数据进行排序,然后,再遍历排序之后的订单数据,对于每个金额相同的小区间再按照下单时间排序。这种排序思路理解起来不难,但是实现起来会很复杂。

借助稳定排序算法,这个问题可以非常简洁地解决。解决思路是这样的:我们先按照下单时间给订单排序,注意是按照下单时间,不是金额。排序完成之后,我们用稳定排序算法,按照订单金额重新排序。两遍排序之后,我们得到的订单数据就是按照金额从小到大排序,金额相同的订单按照下单时间从早到晚排序的。为什么呢?

稳定排序算法可以保持金额相同的两个对象,在排序之后的前后顺序不变。第一次排序之后,所有的订单按照下单时间从早到晚有序了。在第二次排序中,我们用的是稳定的排序算法,所以经过第二次排序之后,相同金额的订单仍然保持下单时间从早到晚有序。

数据结构与算法10-冒泡排序、插入排序、选择排序

冒泡排序(Bubble Sort)

我们从冒泡排序开始,学习今天的三种排序算法。

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。

我用一个例子,带你看下冒泡排序的整个过程。我们要对一组数据 4,5,6,3,2,1,从小到到大进行排序。第一次冒泡操作的详细过程就是这样:

数据结构与算法10-冒泡排序、插入排序、选择排序

可以看出,经过一次冒泡操作之后,6 这个元素已经存储在正确的位置上。要想完成所有数据的排序,我们只要进行 6 次这样的冒泡操作就行了。

数据结构与算法10-冒泡排序、插入排序、选择排序

实际上,刚讲的冒泡过程还可以优化。当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。我这里还有另外一个例子,这里面给 6 个元素排序,只需要 4 次冒泡操作就可以了。

数据结构与算法10-冒泡排序、插入排序、选择排序

冒泡排序算法的原理比较容易理解,具体的代码我贴到下面,你可以结合着代码来看我前面讲的原理。

  // 冒泡排序,a是数组,n表示数组大小
  public static void bubbleSort(int[] a, int n) {
    if (n <= 1) return;

    for (int i = 0; i < n; ++i) {
      // 提前退出标志位
      boolean flag = false;
      for (int j = 0; j < n - i - 1; ++j) {
        if (a[j] > a[j+1]) { // 交换
          int tmp = a[j];
          a[j] = a[j+1];
          a[j+1] = tmp;
          // 此次冒泡有数据交换
          flag = true;
        }
      }
      if (!flag) break;  // 没有数据交换,提前退出
    }
  }

现在,结合刚才我分析排序算法的三个方面,我有三个问题要问你。

第一,冒泡排序是原地排序算法吗?

冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是一个原地排序算法。

第二,冒泡排序是稳定的排序算法吗?

在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法。

第三,冒泡排序的时间复杂度是多少?

最好情况下,要排序的数据已经是有序的了,我们只需要进行一次冒泡操作,就可以结束了,所以最好情况时间复杂度是 O(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行 n 次冒泡操作,所以最坏情况时间复杂度为 O(n2)。

数据结构与算法10-冒泡排序、插入排序、选择排序

最好、最坏情况下的时间复杂度很容易分析,那平均情况下的时间复杂是多少呢?我们前面讲过,平均时间复杂度就是加权平均期望时间复杂度,分析的时候要结合概率论的知识。

对于包含 n 个数据的数组,这 n 个数据就有 n! 种排列方式。不同的排列方式,冒泡排序执行的时间肯定是不同的。比如我们前面举的那两个例子,其中一个要进行 6 次冒泡,而另一个只需要 4 次。如果用概率论方法定量分析平均时间复杂度,涉及的数学推理和计算就会很复杂。我这里还有一种思路,通过“有序度”和“逆序度”这两个概念来进行分析。

有序度是数组中具有有序关系的元素对的个数。有序元素对用数学表达式表示就是这样:

有序元素对:a[i] <= a[j], 如果 i < j。

数据结构与算法10-冒泡排序、插入排序、选择排序

同理,对于一个倒序排列的数组,比如 6,5,4,3,2,1,有序度是 0;对于一个完全有序的数组,比如 1,2,3,4,5,6,有序度就是n*(n-1)/2,也就是 15。我们把这种完全有序的数组的有序度叫作满有序度

逆序度的定义正好跟有序度相反(默认从小到大为有序),我想你应该已经想到了。关于逆序度,我就不举例子讲了。你可以对照我讲的有序度的例子自己看下。

逆序元素对:a[i] > a[j], 如果 i < j。

关于这三个概念,我们还可以得到一个公式:逆序度 = 满有序度 - 有序度。我们排序的过程就是一种增加有序度,减少逆序度的过程,最后达到满有序度,就说明排序完成了。

我还是拿前面举的那个冒泡排序的例子来说明。要排序的数组的初始状态是 4,5,6,3,2,1 ,其中,有序元素对有 (4,5) (4,6)(5,6),所以有序度是 3。n=6,所以排序完成之后终态的满有序度为 n*(n-1)/2=15。

数据结构与算法10-冒泡排序、插入排序、选择排序

冒泡排序包含两个操作原子,比较交换。每交换一次,有序度就加 1。不管算法怎么改进,交换次数总是确定的,即为逆序度,也就是n*(n-1)/2–初始有序度。此例中就是 15–3=12,要进行 12 次交换操作。

对于包含 n 个数据的数组进行冒泡排序,平均交换次数是多少呢?最坏情况下,初始状态的有序度是 0,所以要进行 n*(n-1)/2 次交换。最好情况下,初始状态的有序度是 n*(n-1)/2,就不需要进行交换。我们可以取个中间值 n*(n-1)/4,来表示初始有序度既不是很高也不是很低的平均情况。

换句话说,平均情况下,需要 n*(n-1)/4 次交换操作,比较操作肯定要比交换操作多,而复杂度的上限是 O(n2),所以平均情况下的时间复杂度就是 O(n2)。

这个平均时间复杂度推导过程其实并不严格,但是很多时候很实用,毕竟概率论的定量分析太复杂,不太好用。等我们讲到快排的时候,我还会再次用这种“不严格”的方法来分析平均时间复杂度。

插入排序(Insertion Sort)

我们先来看一个问题。一个有序的数组,我们往里面添加一个新的数据后,如何继续保持数据有序呢?很简单,我们只要遍历数组,找到数据应该插入的位置将其插入即可。

数据结构与算法10-冒泡排序、插入排序、选择排序

这是一个动态排序的过程,即动态地往有序集合中添加数据,我们可以通过这种方法保持集合中的数据一直有序。而对于一组静态数据,我们也可以借鉴上面讲的插入方法,来进行排序,于是就有了插入排序算法。

插入排序具体是如何借助上面的思想来实现排序的呢

首先,我们将数组中的数据分为两个区间,已排序区间未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。

如图所示,要排序的数据是 4,5,6,1,3,2,其中左侧为已排序区间,右侧是未排序区间。

数据结构与算法10-冒泡排序、插入排序、选择排序

插入排序也包含两种操作,一种是元素的比较,一种是元素移动。当我们需要将一个数据 a 插入到已排序区间时,需要拿 a 与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一位,这样才能腾出位置给元素 a 插入。

对于不同的查找插入点方法(从头到尾、从尾到头),元素的比较次数是有区别的。但对于一个给定的初始序列,移动操作的次数总是固定的,就等于逆序度。

为什么说移动次数就等于逆序度呢?我拿刚才的例子画了一个图表,你一看就明白了。满有序度是 n*(n-1)/2=15,初始序列的有序度是 5,所以逆序度是 10。插入排序中,数据移动的个数总和也等于 10=3+3+4。

数据结构与算法10-冒泡排序、插入排序、选择排序

插入排序的原理也很简单吧?我也将代码实现贴在这里,你可以结合着代码再看下。

  // 插入排序,a表示数组,n表示数组大小
  public static void insertionSort(int[] a, int n) {
    if (n <= 1) return;

    for (int i = 1; i < n; ++i) {
      int value = a[i];
      int j = i - 1;
      // 查找要插入的位置并移动数据
      for (; j >= 0; --j) {
        if (a[j] > value) {
          a[j+1] = a[j];
        } else {
          break;
        }
      }
      a[j+1] = value;
    }
  }

现在,我们来看点稍微复杂的东西。我这里还是有三个问题要问你。

第一,插入排序是原地排序算法吗?

从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),也就是说,这是一个原地排序算法。

第二,插入排序是稳定的排序算法吗?

在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。

第三,插入排序的时间复杂度是多少?

如果要排序的数据已经是有序的,我们并不需要搬移任何数据。如果我们从尾到头在有序数据组里面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复杂度为 O(n)。注意,这里是从尾到头遍历已经有序的数据

如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,所以最坏情况时间复杂度为 O(n2)。

还记得我们在数组中插入一个数据的平均时间复杂度是多少吗?没错,是 O(n)。所以,对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行 n 次插入操作,所以平均时间复杂度为 O(n2)。

选择排序(Selection Sort)

选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。

数据结构与算法10-冒泡排序、插入排序、选择排序

照例,也有三个问题需要你思考,不过前面两种排序算法我已经分析得很详细了,这里就直接公布答案了。

首先,选择排序空间复杂度为 O(1),是一种原地排序算法。选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都为 O(n2)。你可以自己来分析看看。

那选择排序是稳定的排序算法吗?这个问题我着重来说一下。

答案是否定的,选择排序是一种不稳定的排序算法。从我前面画的那张图中,你可以看出来,选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。

比如 5,8,5,2,9 这样一组数据,使用选择排序算法来排序的话,第一次找到最小元素 2,与第一个 5 交换位置,那第一个 5 和中间的 5 顺序就变了,所以就不稳定了。正是因此,相对于冒泡排序和插入排序,选择排序就稍微逊色了。

选择排序代码:

  // 选择排序,a表示数组,n表示数组大小
  public static void selectionSort(int[] a, int n) {
    if (n <= 1) return;

    for (int i = 0; i < n - 1; ++i) {
      // 查找最小值
      int minIndex = i;
      for (int j = i + 1; j < n; ++j) {
        if (a[j] < a[minIndex]) {
          minIndex = j;
        }
      }

      // 交换
      int tmp = a[i];
      a[i] = a[minIndex];
      a[minIndex] = tmp;
    }
  }

解答开篇

基本的知识都讲完了,我们来看开篇的问题:冒泡排序和插入排序的时间复杂度都是 O(n2),都是原地排序算法,为什么插入排序要比冒泡排序更受欢迎呢?

我们前面分析冒泡排序和插入排序的时候讲到,冒泡排序不管怎么优化,元素交换的次数是一个固定值,是原始数据的逆序度。插入排序是同样的,不管怎么优化,元素移动的次数也等于原始数据的逆序度。

但是,从代码实现上来看,冒泡排序的数据交换要比插入排序的数据移动要复杂,冒泡排序需要 3 个赋值操作,而插入排序只需要 1 个。我们来看这段操作:

冒泡排序中数据的交换操作:
if (a[j] > a[j+1]) { // 交换
   int tmp = a[j];
   a[j] = a[j+1];
   a[j+1] = tmp;
   flag = true;
}

插入排序中数据的移动操作:
if (a[j] > value) {
  a[j+1] = a[j];  // 数据移动
} else {
  break;
}

我们把执行一个赋值语句的时间粗略地计为单位时间(unit_time),然后分别用冒泡排序和插入排序对同一个逆序度是 K 的数组进行排序。用冒泡排序,需要 K 次交换操作,每次需要 3 个赋值语句,所以交换操作总耗时就是 3*K 单位时间。而插入排序中数据移动操作只需要 K 个单位时间。

这个只是我们非常理论的分析,为了实验,针对上面的冒泡排序和插入排序的 Java 代码,我写了一个性能对比测试程序,随机生成 10000 个数组,每个数组中包含 200 个数据,然后在我的机器上分别用冒泡和插入排序算法来排序,冒泡排序算法大约 700ms 才能执行完成,而插入排序只需要 100ms 左右就能搞定!

所以,虽然冒泡排序和插入排序在时间复杂度上是一样的,都是 O(n2),但是如果我们希望把性能优化做到极致,那肯定首选插入排序。插入排序的算法思路也有很大的优化空间,我们只是讲了最基础的一种。如果你对插入排序的优化感兴趣,可以自行学习一下希尔排序。

希尔排序代码:

  private static void shellSort(int[] arr) {
    int len = arr.length;
    if (len == 1) return;

    int step = len / 2;
    while (step >= 1) {
      for (int i = step; i < len; i++) {
        int value = arr[i];
        int j = i - step;
        for (; j >= 0; j -= step) {
          if (value < arr[j]) {
            arr[j+step] = arr[j];
          } else {
            break;
          }
        }
        arr[j+step] = value;
      }

      step = step / 2;
    }
  }

内容小结

要想分析、评价一个排序算法,需要从执行效率、内存消耗和稳定性三个方面来看。因此,这一节,我带你分析了三种时间复杂度是 O(n2) 的排序算法,冒泡排序、插入排序、选择排序。你需要重点掌握的是它们的分析方法。

数据结构与算法10-冒泡排序、插入排序、选择排序

这三种时间复杂度为 O(n2) 的排序算法中,冒泡排序、选择排序,可能就纯粹停留在理论的层面了,学习的目的也只是为了开拓思维,实际开发中应用并不多,但是插入排序还是挺有用的。后面讲排序优化的时候,我会讲到,有些编程语言中的排序函数的实现原理会用到插入排序算法。

今天讲的这三种排序算法,实现代码都非常简单,对于小规模数据的排序,用起来非常高效。但是在大规模数据排序的时候,这个时间复杂度还是稍微有点高,所以我们更倾向于用下一节要讲的时间复杂度为 O(nlogn) 的排序算法。

数据结构与算法10-冒泡排序、插入排序、选择排序