数据结构——堆排序
堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。
在之前的文章中已经介绍过大小顶堆的实现办法,再简单介绍一下。
大顶堆
小顶堆
堆排序
堆排序(Heapsort)是指利用堆这种数据结构(后面的【图解数据结构】内容会讲解分析)所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:
-
大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;
-
小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;
堆排序的平均时间复杂度为 Ο(nlogn)。
算法步骤
-
创建一个堆 H[0……n-1];
-
把堆首(最大值)和堆尾互换;
-
把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;
-
重复步骤 2,直到堆的尺寸为 1。
来源:https://github.com/hustcc/JS-Sorting-Algorithm
算法演示
排序动画过程解释
-
首先,将所有的数字存储在堆中
-
按大顶堆构建堆,其中大顶堆的一个特性是数据将被从大到小取出,将取出的数字按照相反的顺序进行排列,数字就完成了排序
-
在这里数字 5 先入堆
-
数字 2 入堆
-
数字 7 入堆, 7 此时是最后一个节点,与最后一个非叶子节点(也就是数字 5 )进行比较,由于 7 大于 5 ,所以 7 和 5 交互
-
按照上述的操作将所有数字入堆,然后从左到右,从上到下进行调整,构造出大顶堆
-
入堆完成之后,将堆顶元素取出,将末尾元素置于堆顶,重新调整结构,使其满足堆定义
-
堆顶元素数字 7 取出,末尾元素数字 4 置于堆顶,为了维护好大顶堆的定义,最后一个非叶子节点数字 5 与 4 比较,而后交换两个数字的位置
-
反复执行调整+交换步骤,直到整个序列有序
代码实现
/*
* (最大)堆的向下调整算法
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
* 其中,N为数组下标索引值,如数组中第1个数对应的N为0。
*
* 参数说明:
* a -- 待排序的数组
* start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
* end -- 截至范围(一般为数组中最后一个元素的索引)
*/
void maxheap_down(int a[], int start, int end)
{
int c = start; // 当前(current)节点的位置
int l = 2*c + 1; // 左(left)孩子的位置
int tmp = a[c]; // 当前(current)节点的大小
for (; l <= end; c=l,l=2*l+1)
{
// "l"是左孩子,"l+1"是右孩子
if ( l < end && a[l] < a[l+1])
l++; // 左右两孩子中选择较大者,即m_heap[l+1]
if (tmp >= a[l])
break; // 调整结束
else // 交换值
{
a[c] = a[l];
a[l]= tmp;
}
}
}
/*
* 堆排序(从小到大)
*
* 参数说明:
* a -- 待排序的数组
* n -- 数组的长度
*/
void heap_sort_asc(int a[], int n)
{
int i;
// 从(n/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个(最大)二叉堆。
for (i = n / 2 - 1; i >= 0; i--)
maxheap_down(a, i, n-1);
// 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
for (i = n - 1; i > 0; i--)
{
// 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最大的。
swap(a[0], a[i]);
// 调整a[0...i-1],使得a[0...i-1]仍然是一个最大堆。
// 即,保证a[i-1]是a[0...i-1]中的最大值。
maxheap_down(a, 0, i-1);
}
}
上一篇: 数据结构:堆排序
下一篇: 数据结构 - 堆排序