欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

杭电OJ——1051 Wooden Sticks

程序员文章站 2022-06-03 23:38:58
...

Wooden Sticks




Problem Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:

(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup.

You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2).

Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1<=n<=5000, that represents the number of wooden sticks in the test case, and the second line contains n 2 positive integers l1, w1, l2, w2, ..., ln, wn, each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.

Output
The output should contain the minimum setup time in minutes, one per line.

Sample Input

3 5 4 9 5 2 2 1 3 5 1 4 3 2 2 1 1 2 2 3 1 3 2 2 3 1

Sample Output

2 1 3
这算是我第一次比较系统的接触贪心算法!感觉比较差!题目做不出!但是我听说过一句很经典的话,拿出来和大大家共勉一下吧!“失败并不是什么丢人的事情,从失败中全无收获才是!”,对,题目做不出没有什么丢人,从题目中毫无收获才是!

我参考了别人的代码,结合自己的理解,总结一下知识点以及注意点吧!

这道题目是先要排序的,按照长度或者重量排都可以,当长度(重量)相同时就按照重量(长度)排,从大到小或从小到大都可以!这里我懂的,没有问题!
排序之后,问题就可以简化,(假设按照长度不等时长度排,长度等是按照重量排,我假设按照从大到小来排!)即求排序后的所有的重量值最少能表示成几个集合。长度就不用再管了,从数组第一个数开始遍历,只要重量值满足条件,那么这两个木棍就满足条件!

刚开始我不懂,为什么用贪心可以找出最优解!也在这个问题上纠结了很久,感觉比较痛苦!后来通过自己苦想,还是想了出来!
注意:在这里通过贪心或者动归算出来的结果没有不同,即用贪心也可以解出,并且效率比动归高!
这是由这道题的数据的特殊性决定的!

有一些规则需要注意:
用一幅图来描述吧!
杭电OJ——1051 Wooden Sticks








参考代码如下:
//几天不敲代码,感觉退化了!又粗心死了!

#include<iostream>
#include<algorithm>
using namespace std;

struct SIZE
{
	int l;
	int w;
}sticks[5005];
int flag[5005];

bool cmp(const SIZE &a,const SIZE &b)//这里是排序!
{//写排序函数的时候要特别的小心!
	//if(a.w!=b.w)//这里写错了,这里表示如果重量不等,按照长度排,如果重量相等,则按照重量排!(没意义!)
	if(a.l!=b.l)
		return a.l>b.l;//长度不等时按照长度排,从大到小排
	else
		return a.w>b.w;//长度相等时,再按照重量从大到小排列
}

int main()
{
	int n,min,cases;
	int i,j,s;
	

	cin>>cases; 
	for(j=0;j<cases;j++)
	{
		cin>>n;
		for(i=0;i<n;i++)
		{
			cin>>sticks[i].l>>sticks[i].w;
			flag[i]=0;
		}
		sort(sticks,sticks+n,cmp);

		s=0;
		for(i=0;i<n;i++)
		{
			if(flag[i]) continue;
			min=sticks[i].w;

			for(int j=i+1;j<n;j++)
			{
				if(min>=sticks[j].w && !flag[j])
				{
					min=sticks[j].w;
					flag[j]=1;
				}
			}
			s++;
		}
		cout<<s<<endl;
	}
	//system("pause");
	return 0;
}