内存区划分
内存区划分
一.内存分配(汇编语言/高级语言)
站在汇编语言的角度,一个程序分为:
数据段 – DS
堆栈段 – SS
代码段 – CS
扩展段 – ES
站在高级语言的角度,根据APUE,一个程序分为如下段:
text
data (initialized)
bss
stack
heap
1.一般情况下,一个可执行二进制程序(更确切的说,在Linux操作系统下为一个进程单元,在UC/OSII中被称为任务)在存储(没有调入到内存运行)时拥有3个部分,分别是代码段(text)、数据段(data)和BSS段。这3个部分一起组成了该可执行程序的文件。
★★可执行二进制程序 = 代码段(text)+数据段(data)+BSS段★★
2.而当程序被加载到内存单元时,则需要另外两个域:堆域和栈域。图1-1所示为可执行代码存储态和运行态的结构对照图。一个正在运行的C程序占用的内存区域分为代码段、初始化数据段、未初始化数据段(BSS)、堆、栈5个部分。
★★正在运行的C程序 = 代码段+初始化数据段(data)+未初始化数据段(BSS)+堆+栈★★
3.在将应用程序加载到内存空间执行时,操作系统负责代码段、数据段和BSS段的加载,并将在内存中为这些段分配空间。栈亦由操作系统分配和管理,而不需要程序员显示地管理;堆段由程序员自己管理,即显示地申请和释放空间。
4.动态分配与静态分配,二者最大的区别在于:1. 直到Run-Time的时候,执行动态分配,而在compile-time的时候,就已经决定好了分配多少Text+Data+BSS+Stack。2.通过malloc()动态分配的内存,需要程序员手工调用free()释放内存,否则容易导致内存泄露,而静态分配的内存则在进程执行结束后系统释放(Text, Data), 但Stack段中的数据很短暂,函数退出立即被销毁。
图1-1(从可执行文件a.out的角度来讲,如果一个数据未被初始化那就不需要为其分配空间,所以.data和.bss一个重要的区别就是.bss并不占用可执行文件的大小,它只是记载需要多少空间来存储这些未初始化数据,而不分配实际的空间)
二.划分
1.代码段 --text(code segment/text segment)
text段在内存中被映射为只读,但.data和.bss是可写的。
text段是程序代码段,在AT91库中是表示程序段的大小,它是由编译器在编译连接时自动计算的,当你在链接定位文件中将该符号放置在代码段后,那么该符号表示的值就是代码段大小,编译连接时,该符号所代表的值会自动代入到源程序中。
2.数据段 – data
data包含静态初始化的数据,所以有初值的全局变量和static变量在data区。段的起始位置也是由连接定位文件所确定,大小在编译连接时自动分配,它和你的程序大小没有关系,但和程序使用到的全局变量,常量数量相关。数据段属于静态内存分配。
3.bss段–bss
bss是英文Block Started by Symbol的简称,通常是指用来存放程序中未初始化的全局变量的一块内存区域,在程序载入时由内核清0。BSS段属于静态内存分配。它的初始值也是由用户自己定义的连接定位文件所确定,用户应该将它定义在可读写的RAM区内,源程序中使用malloc分配的内存就是这一块,它不是根据data大小确定,主要由程序中同时分配内存最大值所确定,不过如果超出了范围,也就是分配失败,可以等空间释放之后再分配。BSS段属于静态内存分配。
4.stack:
栈(stack)保存函数的局部变量(但不包括static声明的变量, static 意味着 在数据段中 存放变量),参数以及返回值。是一种“后进先出”(Last In First Out,LIFO)的数据结构,这意味着最后放到栈上的数据,将会是第一个从栈上移走的数据。对于哪些暂时存贮的信息,和不需要长时间保存的信息来说,LIFO这种数据结构非常理想。在调用函数或过程后,系统通常会清除栈上保存的局部变量、函数调用信息及其它的信息。栈另外一个重要的特征是,它的地址空间“向下减少”,即当栈上保存的数据越多,栈的地址就越低。栈(stack)的顶部在可读写的RAM区的最后。
5.heap:
堆(heap)保存函数内部动态分配内存,是另外一种用来保存程序信息的数据结构,更准确的说是保存程序的动态变量。堆是“先进先出”(First In first Out,FIFO)数据结构。它只允许在堆的一端插入数据,在另一端移走数据。堆的地址空间“向上增加”,即当堆上保存的数据越多,堆的地址就越高。
下图是APUE中的一个典型C内存空间分布图:
所以可以知道传入的参数,局部变量,都是在栈顶分布,随着子函数的增多而向下增长.
函数的调用地址(函数运行代码),全局变量,静态变量都是在分配内存的低部存在,而malloc分配的堆则存在于这些内存之上,并向上生长.
三.instance analysis
#include <stdio.h>
const int g_A = 10; //代码段
int g_B = 20; //数据段
static int g_C = 30; //数据段
static int g_D; //BSS段
int g_E; //BSS段
char *p1; //BSS段
int main( )
{
int local_A; //栈
int local_B; //栈
static int local_C = 0; //数据段
static int local_D; //数据段
char *p3 = "123456"; //123456在代码段,p3在栈上
p1 = (char *)malloc( 10 ); //堆,分配得来得10字节的区域在堆区
strcpy( p1, "123456" ); //123456{post.content}放在常量区,编译器可能会将它与p3所指向 的"123456"优化成一块
printf("hight address\n");
printf("-------------栈--------------\n");
printf( "栈, 局部变量, local_A, addr:0x%08x\n", &local_A );
printf( "栈, 局部变量,(后进栈地址相对local_A低) local_B, addr:0x%08x\n", &local_B );
printf("-------------堆--------------\n");
printf( "堆, malloc分配内存, p1, addr:0x%08x\n", p1 );
printf("------------BSS段------------\n");
printf( "BSS段, 全局变量, 未初始化 g_E, addr:0x%08x\n", &g_E, g_E );
printf( "BSS段, 静态全局变量, 未初始化, g_D, addr:0x%08x\n", &g_D );
printf( "BSS段, 静态局部变量, 初始化, local_C, addr:0x%08x\n", &local_C);
printf( "BSS段, 静态局部变量, 未初始化, local_D, addr:0x%08x\n", &local_D);
printf("-----------数据段------------\n");
printf( "数据段,全局变量, 初始化 g_B, addr:0x%08x\n", &g_B);
printf( "数据段,静态全局变量, 初始化, g_C, addr:0x%08x\n", &g_C);
printf("-----------代码段------------\n");
printf( "代码段,全局初始化变量, 只读const, g_A, addr:0x%08x\n\n", &g_A);
printf("low address\n");
return 0;
}
本文参考:https://blog.csdn.net/love_gaohz/article/details/41310597
下一篇: java内存分析详解