欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

[牛客网#35D 树的距离]离散化+线段树合并

程序员文章站 2022-06-02 13:42:58
...

[牛客网#35D 树的距离]离散化+线段树合并

分类:Data Structure SegMent Tree Merge

1. 题目链接

[牛客网#35D 树的距离]

2. 题意描述

wyf非常喜欢树。一棵有根数树上有n个节点,1号点是他的根,每条边都有一个距离,而wyf是个爱问奇怪问题的熊孩子,他想知道对于某个点x,以x为根的子树上,所有与x距离大于等于k的点与x的距离之和。
数据范围:1n,q2105,1d,k106

3. 解题思路

同《[Codeforces 893F. Subtree Minimum Query]线段树合并》这题的思路。
通过这两个题目总算对线段树合并比较理解了。
对每个节点建一个线段树,维护每个距离出现的次数以及区间距离之和。

4. 实现代码

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef long double lb;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<ull, ull> puu;
typedef pair<lb, lb> pbb;
typedef vector<int> vi;

const int inf = 0x3f3f3f3f;
const ll infl = 0x3f3f3f3f3f3f3f3fLL;
template<typename T> inline void umax(T &a, T b) { a = max(a, b); }
template<typename T> inline void umin(T &a, T b) { a = min(a, b); }
template<typename T> inline T randIntv(const T& a, const T& b) { return (T)rand() % (b - a + 1) + a; }
void debug() { cout << endl; }
template<typename T, typename ...R> void debug (T f, R ...r) { cout << "[" << f << "]"; debug (r...); }

const int MAXN = 200005;
int n, q;
struct Edge {
    int v, next;
    ll w;
} edge[MAXN << 1];
int head[MAXN], etot;
void ini(int n) {
    etot = 0;
    for (int i = 0; i <= n; ++i) head[i] = -1;
}
void ins(int u, int v, ll w) {
    edge[etot].v = v;
    edge[etot].w = w;
    edge[etot].next = head[u];
    head[u] = etot ++;
}

struct TNode {
    int cnt;
    ll sum;
    int ch[2];
    void ini() { cnt = sum = ch[0] = ch[1] = 0; }
} nd[MAXN * 50];
int root[MAXN], nsz, null = 0;
ll dep[MAXN];
ll f[MAXN], fsz;
#define lch     nd[rt].ch[0]
#define rch     nd[rt].ch[1]
void pushUp(int rt) {
    nd[rt].cnt = nd[lch].cnt + nd[rch].cnt;
    nd[rt].sum = nd[lch].sum + nd[rch].sum;
}
void update(int p, ll v, int l, int r, int& rt) {
    nd[rt = ++ nsz].ini();
    if (l == r) {
        nd[rt].cnt = 1;
        nd[rt].sum = v;
        return;
    }
    int md = (l + r) >> 1;
    if (p <= md) update(p, v, l, md, lch);
    else update(p, v, md + 1, r, rch);
    pushUp(rt);
}
int merge(int u, int v) {
    if (!u || !v) return u ^ v;
    int rt = ++ nsz; nd[rt].ini();
    nd[rt].ch[0] = merge(nd[u].ch[0], nd[v].ch[0]);
    nd[rt].ch[1] = merge(nd[u].ch[1], nd[v].ch[1]);
    nd[rt].cnt = nd[u].cnt + nd[v].cnt;
    nd[rt].sum = nd[u].sum + nd[v].sum;
    return rt;
}

void dfs1(int u, int fa, ll d) {
    dep[u] = d;
    for (int i = head[u]; ~i; i = edge[i].next) {
        int v = edge[i].v; ll w = edge[i].w;
        if (v == fa) continue;
        dfs1(v, u, d + w);
    }
}

void dfs2(int u, int fa) {
    int pos = lower_bound(f + 1, f + fsz + 1, dep[u]) - f;
    update(pos, dep[u], 1, fsz, root[u]);
    for (int i = head[u]; ~i; i = edge[i].next) {
        int v = edge[i].v;
        if (v == fa) continue;
        dfs2(v, u);
        root[u] = merge(root[u], root[v]);
    }
}

pair<int, ll> query(int L, int R, int l, int r, int rt) {
    // if (L <= l && r <= R) debug("query", rt, nd[rt].cnt, nd[rt].sum);
    if (L <= l && r <= R) return make_pair(nd[rt].cnt, nd[rt].sum);
    int md = (l + r) >> 1;
    pair<int, ll> lop(0, 0), rop(0, 0);
    if (L <= md) lop = query(L, R, l, md, lch);
    if (R > md) rop = query(L, R, md + 1, r, rch);
    return make_pair(lop.first + rop.first, lop.second + rop.second);
}

int main() {
#ifdef ___LOCAL_WONZY___
    freopen("input.txt", "r", stdin);
#endif // ___LOCAL_WONZY___
    int u, x, cnt; ll w, k, sum, ans;
    while (~scanf("%d", &n)) {
        ini(n);
        for (int i = 2; i <= n; ++i) {
            scanf("%d %lld", &u, &w);
            ins(i, u, w), ins(u, i, w);;
        }
        nsz = null = 0;
        dfs1(1, 1, 1);
        for (int i = 1; i <= n; ++i) f[i] = dep[i];
        sort(f + 1, f + n + 1);
        fsz = unique(f + 1, f + n + 1) - (f + 1);
        dfs2(1, 1);
        scanf("%d", &q);
        for (int i = 1; i <= q; ++i) {
            scanf("%d %lld", &x, &k);
            int pos = lower_bound(f + 1, f + fsz + 1, dep[x] + k) - f;
            tie(cnt, sum) = query(pos, fsz, 1, fsz, root[x]);
            ans = sum - cnt * dep[x];
            // debug(cnt, sum, ans);
            printf("%lld\n", ans);
        }
    }
#ifdef ___LOCAL_WONZY___
    cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC * 1000 << "ms." << endl;
#endif // ___LOCAL_WONZY___
    return 0;
}
相关标签: 合并