欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

缺陷检测之高纹理图像检测

程序员文章站 2022-06-01 15:53:42
...

1、代码

* 该例程展示了如何在高纹理图像中检测mura缺陷
* 
dev_close_window ()
dev_update_off ()
Path := 'lcd/mura_defects_texture_'
read_image (Image, Path + '01')
get_image_size (Image, Width, Height)
dev_open_window (0, 0, 640, 480, 'black', WindowHandle)
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')
dev_set_draw ('margin')
dev_set_line_width (3)
dev_set_color ('red')
for F := 1 to 2 by 1
    read_image (Image, Path + F$'.2i')
    * 3通道图像分解
    decompose3 (Image, R, G, B)
    * 缺陷的特征是暗斑。因此,通过从原始图像中减去估计的背景光照,使缺陷突出。
    * 估计图像背景光照
    estimate_background_illumination (B, ImageFFT1)
    sub_image (B, ImageFFT1, ImageSub, 2, 100)
    * Median filter smoothes out the fine texture, simplifying the following
    * segmentation and final detection of defects.
    median_image (ImageSub, ImageMedian, 'circle', 9, 'mirrored')
    * 基于分水岭算法的阈值分割
    watersheds_threshold (ImageMedian, Basins, 20)
    * 暗斑对应于较低的能量
    cooc_feature_image (Basins, ImageMedian, 6, 0, Energy, Correlation, Homogeneity, Contrast)
    * 能量值<0.05的为暗斑,置true,反之false,选取暗斑区域
    Mask := Energy [<=] 0.05
    select_mask_obj (Basins, Defects, Mask)
    * 
    dev_display (Image)
    dev_display (Defects)
    count_obj (Defects, NDefects)
    disp_message (WindowHandle, NDefects + ' \'mura\' defects detected', 'window', 12, 12, 'red', 'true')
    if (F < 2)
        disp_continue_message (WindowHandle, 'black', 'true')
        stop ()
    endif
endfor
**** 函数 estimate_background_illumination (B, ImageFFT1)
get_image_size (Image, Width, Height)
rft_generic (Image, ImageFFT, 'to_freq', 'none', 'complex', Width)
gen_gauss_filter (ImageGauss, 50, 50, 0, 'n', 'rft', Width, Height)
convol_fft (ImageFFT, ImageGauss, ImageConvol)
rft_generic (ImageConvol, IlluminationImage, 'from_freq', 'none', 'byte', Width)
return ()

2、结果图像

缺陷检测之高纹理图像检测
缺陷检测之高纹理图像检测缺陷检测之高纹理图像检测缺陷检测之高纹理图像检测缺陷检测之高纹理图像检测

3、算子

  • rft_generic(Image : ImageFFT : Direction, Norm, ResultType, Width : )计算图像的实数值快速傅里叶变换缺陷检测之高纹理图像检测
  • gen_gauss_filter( : ImageGauss : Sigma1, Sigma2, Phi, Norm, Mode, Width, Height : )生成频率域的高斯滤波器
    缺陷检测之高纹理图像检测缺陷检测之高纹理图像检测
  • convol_fft(ImageFFT, ImageFilter : ImageConvol : : )在频率域将图像与滤波器进行卷积

    例:

    gen_highpass(Highpass,0.2,'n','dc_edge',Width,Height)
    fft_generic(Image,ImageFFT,'to_freq',-1,'none','dc_edge','complex')
    convol_fft(ImageFFT,Highpass,ImageConvol)
    fft_generic(ImageConvol,ImageResult,'from_freq',1,'none','dc_edge','byte')
  • cooc_feature_image(Regions, Image : : LdGray, Direction : Energy, Correlation, Homogeneity, Contrast)计算区域图像的共生矩阵并计算其灰度特征值

    缺陷检测之高纹理图像检测

4、小知识点

该部分代码很巧妙,很好的替代for循环

    cooc_feature_image (Basins, ImageMedian, 6, 0, Energy, Correlation, Homogeneity, Contrast)
    Mask := Energy [<=] 0.05
    select_mask_obj (Basins, Defects, Mask)

5、参考

  • Halcon官方例程