欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【python】numpy库np.clip详解

程序员文章站 2022-06-01 12:56:59
...

将将数组中的元素限制在a_min, a_max之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_min.

a = np.array([[1,2,3,4,5,6,7,8],[1,2,3,4,5,6,7,8]])
np.clip(a,2,6)
#输出:array([[2, 2, 3, 4, 5, 6, 6, 6],
       [2, 2, 3, 4, 5, 6, 6, 6]])

官方文档:

Parameters:	
a : np数组
a_min : scalar or array_like or None#可以为空

Minimum value. If None, clipping is not performed on lower interval edge. Not more than one of a_min and a_max may be None.

a_max : scalar or array_like or None#可以为空

Maximum value. If None, clipping is not performed on upper interval edge. Not more than one of a_min and a_max may be None. If a_min or a_max are array_like, then the three arrays will be broadcasted to match their shapes.

out : ndarray, optional

The results will be placed in this array. It may be the input array for in-place clipping. out must be of the right shape to hold the output. Its type is preserved.
>>> a = np.arange(10)
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8)
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])