欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

《Convolutional Neural Networks for Sentence Classification》 文本分类

程序员文章站 2022-05-30 18:29:04
...

文本分类任务中可以利用CNN来提取句子中类似 n-gram 的关键信息。

TextCNN的详细过程原理图见下:

 《Convolutional Neural Networks for Sentence Classification》 文本分类

 

 keras 代码:

 1 def convs_block(data, convs=[3, 3, 4, 5, 5, 7, 7], f=256):
 2     pools = []
 3     for c in convs:
 4         conv = Activation(activation="relu")(BatchNormalization()(
 5             Conv1D(filters=f, kernel_size=c, padding="valid")(data)))
 6         pool = GlobalMaxPool1D()(conv)
 7         pools.append(pool)
 8     return concatenate(pools)
 9 
10 
11 def rnn_v1(seq_length, embed_weight, pretrain=False):
12  
13     main_input = Input(shape=(seq_length,), dtype='float64')
14 
15     in_dim, out_dim = embed_weight.shape
16     embedding = Embedding(input_dim=in_dim, weights=[
17         embed_weight], output_dim=out_dim, trainable=False)
18     content = Activation(activation="relu")(
19         BatchNormalization()((TimeDistributed(Dense(256))(embedding(main_input)))))
20     content = Bidirectional(GRU(256))(content)
21     content = Dropout(0.3)(content)
22     fc = Activation(activation="relu")(
23         BatchNormalization()(Dense(256)(content)))
24     main_output = Dense(3,
25                         activation='softmax')(fc)
26 
27     model = Model(inputs=main_input, outputs=main_output)
28     model.compile(optimizer='adam',
29                   loss='categorical_crossentropy',
30                   metrics=['accuracy'])
31     model.summary()
32     return model

 

说明如下:

  • 输入层

如图所示,,假设句子有 n 个词,vector的维数为 k ,那么这个矩阵就是 n×k 的。

这个矩阵的类型可以是静态的(static),也可以是动态的(non static)。静态就是word vector是固定不变的,而动态则是在模型训练过程中,word vector也当做是可优化的参数,通常把反向误差传播导致word vector中值发生变化的这一过程称为Fine tune

对于未登录词的vector,可以用0或者随机小的正数来填充。

  • 第一层卷积层

输入层通过卷积操作得到若干个Feature Map,卷积窗口的大小为 m*k ,其中 m表示n_gram中的n,通过卷积将得到F个列数为1的Feature Map,F表示卷积核的个数。

  • 池化层

接下来的池化层,文中用了一种称为Max-over-time Pooling的方法。这种方法就是简单地从之前一维的Feature Map中提出最大的值,文中解释最大值代表着最重要的信号。

最终池化层的输出为各个Feature Map的最大值,即一个一维的向量。polling之后得到的是1*F的一维向量。

  • 全连接 + Softmax层

池化层的一维向量的输出通过全连接的方式,连接一个Softmax层。

最终实现时,我们可以在倒数第二层的全连接部分上使用Dropout技术,即对全连接层上的权值参数给予L2正则化的限制。这样做的好处是防止隐藏层单元自适应(或者对称),从而减轻过拟合的程度。

实验部分

1. 数据

实验用到的数据集如下(具体的名称和来源可以参考论文):

《Convolutional Neural Networks for Sentence Classification》 文本分类

2. 模型训练和调参

  • 修正线性单元(Rectified linear units)
  • 滤波器的h大小:3,4,5;对应的Feature Map的数量为100;
  • Dropout率为0.5,L2正则化限制权值大小不超过3;
  • mini-batch的大小为50;

这些参数的选择都是基于SST-2 dev数据集,通过网格搜索方法(Grid Search)得到的最优参数。另外,训练过程中采用随机梯度下降方法,基于shuffled mini-batches之上的,使用了Adadelta update rule(Zeiler, 2012)。

3. 预训练的Word Vector

这里的word vector使用的是公开的数据,即连续词袋模型(COW)在Google News上的训练结果。未登录次的vector值是随机初始化的。

4. 实验结果

实验结果如下图:

《Convolutional Neural Networks for Sentence Classification》 文本分类

其中,前四个模型是上文中所提出的基本模型的各个变种:

  • CNN-rand: 所有的word vector都是随机初始化的,可以训练的参数。
  • CNN-static: Google的Word2Vector工具(CBOW模型)得到的结果,不可训练;
  • CNN-non-static: Google的Word2Vector工具(CBOW模型)得到的结果,但是会在训练过程中被Fine tuned
  • CNN-multichannel: CNN-static和CNN-non-static的混合版本,即两种类型的输入;

5. 结论

  • CNN-static较与CNN-rand好,说明pre-training的word vector确实有较大的提升作用(因为pre-training的word vector显然利用了更大规模的文本数据信息);
  • CNN-non-static较于CNN-static大部分要好,说明适当的Fine tune也是有利的,是因为使得vectors更加贴近于具体的任务
  • CNN-multichannel较于CNN-single在小规模的数据集上有更好的表现,实际上CNN-multichannel体现了一种折中思想,即既不希望Fine tuned的vector距离原始值太远,但同时保留其一定的变化空间。

值得注意的是,static的vector和non-static的相比,有一些有意思的现象如下表格:

《Convolutional Neural Networks for Sentence Classification》 文本分类

  • 原始的word2vector训练结果中,bad对应的最相近词为good,原因是这两个词在句法上的使用是极其类似的(可以简单替换,不会出现语句毛病);而在non-static的版本中,bad对应的最相近词为terrible,这是因为在Fune tune的过程中,vector的值发生改变从而更加贴切数据集(是一个情感分类的数据集),所以在情感表达的角度这两个词会更加接近;
  • 句子中的!最接近一些表达形式较为激进的词汇,如lush等;而,则接近于一些连接词,这和我们的主观感受也是相符的。

Kim Y的这个模型很简单,但是却有着很好的性能。后续Denny用TensorFlow实现了这个模型的简单版本,可参考这篇博文;以及Ye Zhang等人对这个模型进行了大量的实验,并给出了调参的建议,可参考这篇论文

下面总结一下Ye Zhang等人基于Kim Y的模型做了大量的调参实验之后的结论:

  • 由于模型训练过程中的随机性因素,如随机初始化的权重参数,mini-batch,随机梯度下降优化算法等,造成模型在数据集上的结果有一定的浮动,如准确率(accuracy)能达到1.5%的浮动,而AUC则有3.4%的浮动;
  • 词向量是使用word2vec还是GloVe,对实验结果有一定的影响,具体哪个更好依赖于任务本身;
  • Filter的大小对模型性能有较大的影响,并且Filter的参数应该是可以更新的;
  • Feature Map的数量也有一定影响,但是需要兼顾模型的训练效率;
  • 1-max pooling的方式已经足够好了,相比于其他的pooling方式而言;
  • 正则化的作用微乎其微。

Ye Zhang等人给予模型调参者的建议如下:

  • 使用non-static版本的word2vec或者GloVe要比单纯的one-hot representation取得的效果好得多;
  • 为了找到最优的过滤器(Filter)大小,可以使用线性搜索的方法。通常过滤器的大小范围在1-10之间,当然对于长句,使用更大的过滤器也是有必要的;
  • Feature Map的数量在100-600之间;
  • 可以尽量多尝试**函数,实验发现ReLUtanh两种**函数表现较佳;
  • 使用简单的1-max pooling就已经足够了,可以没必要设置太复杂的pooling方式;
  • 当发现增加Feature Map的数量使得模型的性能下降时,可以考虑增大正则的力度,如调高dropout的概率;
  • 为了检验模型的性能水平,多次反复的交叉验证是必要的,这可以确保模型的高性能并不是偶然。

论文附录中还附上了各种调参结果,感兴趣的可以前往阅读之。

TextCNN详细过程:第一层是图中最左边的7乘5的句子矩阵,每行是词向量,维度=5,这个可以类比为图像中的原始像素点了。然后经过有 filter_size=(2,3,4) 的一维卷积层,每个filter_size 有两个输出 channel。第三层是一个1-max pooling层,这样不同长度句子经过pooling层之后都能变成定长的表示了,最后接一层全连接的 softmax 层,输出每个类别的概率。

 

特征:这里的特征就是词向量,有静态(static)和非静态(non-static)方式。static方式采用比如word2vec预训练的词向量,训练过程不更新词向量,实质上属于迁移学习了,特别是数据量比较小的情况下,采用静态的词向量往往效果不错。non-static则是在训练过程中更新词向量。推荐的方式是 non-static 中的 fine-tunning方式,它是以预训练(pre-train)的word2vec向量初始化词向量,训练过程中调整词向量,能加速收敛,当然如果有充足的训练数据和资源,直接随机初始化词向量效果也是可以的。

通道(Channels):图像中可以利用 (R, G, B) 作为不同channel,而文本的输入的channel通常是不同方式的embedding方式(比如 word2vec或Glove),实践中也有利用静态词向量和fine-tunning词向量作为不同channel的做法。

一维卷积(conv-1d):图像是二维数据,经过词向量表达的文本为一维数据,因此在TextCNN卷积用的是一维卷积。一维卷积带来的问题是需要设计通过不同 filter_size 的 filter 获取不同宽度的视野。

Pooling层:利用CNN解决文本分类问题的文章还是很多的,比如这篇 A Convolutional Neural Network for Modelling Sentences 最有意思的输入是在 pooling 改成 (dynamic) k-max pooling ,pooling阶段保留 k 个最大的信息,保留了全局的序列信息。比如在情感分析场景,举个例子:

            “ 我觉得这个地方景色还不错,但是人也实在太多了 ”

虽然前半部分体现情感是正向的,全局文本表达的是偏负面的情感,利用 k-max pooling能够很好捕捉这类信息。