ACGAN代码——阅读记录
程序员文章站
2022-03-09 13:32:37
...
步骤
定义初始化参数
定义生成器网络(标签 尺寸)-将标签和噪声作为输入-全连接层-重排数据-卷积块-生成图片
定义判别器网络 -将生成图片输入卷积块-重排数据—1.输出真伪2.输出分类
初始化参数
数据加载
定义优化器
定义采样
训练: G用随机噪声和标签生成图片——用D打分——定义g_loss 优化G
import argparse
import os
import numpy as np
import math
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--n_classes", type=int, default=10, help="number of classes for dataset") #类别数量
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension") #图片尺寸
parser.add_argument("--channels", type=int, default=1, help="number of image channels") #彩色/黑白
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling") #采样频率
opt = parser.parse_args()
print(opt)
cuda = True if torch.cuda.is_available() else False
def weights_init_normal(m): #定义参数初始化函数,解析:https://www.lizenghai.com/archives/28867.html
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(opt.n_classes, opt.latent_dim) #词嵌入(类别数,维度) ACGAN的条件信息
self.init_size = opt.img_size // 4 # Initial size before upsampling 整除
self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2)) #输入100维噪声 全连接层
self.conv_blocks = nn.Sequential( #CNN用于GAN中要变动
nn.BatchNorm2d(128), #卷积的输出通道数 128 (理解为128个卷积核 128片)
nn.Upsample(scale_factor=2), #上采样 指定输出为输入的多少倍数
nn.Conv2d(128, 128, 3, stride=1, padding=1), #nn.Conv2d(in_channel, out_channel, 3, stride, 1, bias=False)
nn.BatchNorm2d(128, 0.8), #0.8为使数值稳定而加到分母上的值
nn.LeakyReLU(0.2, inplace=True), #0.2=控制负斜率的角度,inplace-选择是否进行覆盖运算
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
nn.Tanh(),
)
def forward(self, noise, labels):
gen_input = torch.mul(self.label_emb(labels), noise) #torch.mul(input, value, out=None)
out = self.l1(gen_input) #经过l1网络全连接层
out = out.view(out.shape[0], 128, self.init_size, self.init_size) #通道数
img = self.conv_blocks(out) #卷积块
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, bn=True):
"""Returns layers of each discriminator block"""
block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]
if bn:
block.append(nn.BatchNorm2d(out_filters, 0.8))
return block
self.conv_blocks = nn.Sequential(
*discriminator_block(opt.channels, 16, bn=False), #discriminator_block在81行
*discriminator_block(16, 32),
*discriminator_block(32, 64),
*discriminator_block(64, 128),
)
# The height and width of downsampled image
ds_size = opt.img_size // 2 ** 4
# Output layers
self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())
self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.n_classes), nn.Softmax())
def forward(self, img):
out = self.conv_blocks(img) #卷积块
out = out.view(out.shape[0], -1) #平铺
validity = self.adv_layer(out) #对抗的结果
label = self.aux_layer(out) #分类的结果
return validity, label
# Loss functions
adversarial_loss = torch.nn.BCELoss()
auxiliary_loss = torch.nn.CrossEntropyLoss()
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
auxiliary_loss.cuda()
# Initialize weights
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)
# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
datasets.MNIST(
"../../data/mnist",
train=True,
download=True,
transform=transforms.Compose(
[transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
),
batch_size=opt.batch_size,
shuffle=True,
)
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
def sample_image(n_row, batches_done):
"""Saves a grid of generated digits ranging from 0 to n_classes"""
# Sample noise
z = FloatTensor(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim)))
# Get labels ranging from 0 to n_classes for n rows
labels = np.array([num for _ in range(n_row) for num in range(n_row)])
labels = LongTensor(labels)#放入GPU
gen_imgs = generator(z, labels) #生成图像有标签
save_image(gen_imgs.data, "images/%d.png" % batches_done, nrow=n_row, normalize=True) #保存到文件夹
# ----------
# Training
# ----------
for epoch in range(opt.n_epochs):
for i, (imgs, labels) in enumerate(dataloader):
batch_size = imgs.shape[0]
# Adversarial ground truths 放入cuda
valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False)
fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)
#valid和fake代表不同的值 训练D时让真实数据值和valid接近 伪造数据值和fake接近
# Configure input
real_imgs = imgs.type(FloatTensor)
labels = labels.type(LongTensor)
# -----------------
# Train Generator 先训练生成器 得到标签
# -----------------
optimizer_G.zero_grad()
# Sample noise and labels as generator input
z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim)))) #均值、标准差、shape(一批多少个z 一个z多少维)
gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, batch_size)))# 返回随机整数[low,high),多少个
# Generate a batch of images
gen_imgs = generator(z, gen_labels)
# Loss measures generator's ability to fool the discriminator
validity, pred_label = discriminator(gen_imgs)
g_loss = 0.5 * (adversarial_loss(validity, valid) + auxiliary_loss(pred_label, gen_labels))
# 判别器给gen_img的得分和预标签为validity, pred_label 生成器的输入为z,gen_labels 希望真实数据的值为valid
g_loss.backward()
optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
#鉴别器loss得定义
# Loss for real images
real_pred, real_aux = discriminator(real_imgs) #真实数据评分和标签
d_real_loss = (adversarial_loss(real_pred, valid) + auxiliary_loss(real_aux, labels)) / 2
#要让valid和real_pred接近 并且让label(直接取得)和判别的aux一致
# Loss for fake images
fake_pred, fake_aux = discriminator(gen_imgs.detach())
d_fake_loss = (adversarial_loss(fake_pred, fake) + auxiliary_loss(fake_aux, gen_labels)) / 2
# 要让fake和fake_pred接近 并且让gen_label(直接取得)和判别的aux一致
# Total discriminator loss
d_loss = (d_real_loss + d_fake_loss) / 2
# Calculate discriminator accuracy concatenate数组拼接
pred = np.concatenate([real_aux.data.cpu().numpy(), fake_aux.data.cpu().numpy()], axis=0)#鉴别器判别的
gt = np.concatenate([labels.data.cpu().numpy(), gen_labels.data.cpu().numpy()], axis=0) #实际取得
d_acc = np.mean(np.argmax(pred, axis=1) == gt) #判别和取得 相同程度
d_loss.backward()
optimizer_D.step()
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %d%%] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), 100 * d_acc, g_loss.item())
)
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
sample_image(n_row=10, batches_done=batches_done)
上一篇: PHP实现用户名中文汉字正则验证