欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

MultiscaleDiscriminator的一点理解

程序员文章站 2022-03-09 13:26:37
...

其实从名字就能大概猜出来应该是对输入的img做了多层特征的判别,也就是说传统的discriminator是对一张image做判别,但是Multiscale是多个传统discriminator的叠加。比如Multiscale中的第一个D是用来判别输入img的真假,第二个D是判别输入img经过下采样后的真假,以此类推。。。
没有看论文直接看了代码,如果理解有问题希望多多指教。
下面是代码时间

import torch.nn as nn
import numpy as np


class NLayerDiscriminator(nn.Module):
    def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, getIntermFeat=False):
        super(NLayerDiscriminator, self).__init__()
        self.getIntermFeat = getIntermFeat
        self.n_layers = n_layers

        kw = 4
        padw = int(np.ceil((kw-1.0)/2))
        sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]]

        nf = ndf
        for n in range(1, n_layers):
            nf_prev = nf
            nf = min(nf * 2, 512)
            sequence += [[
                nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
                norm_layer(nf), nn.LeakyReLU(0.2, True)
            ]]

        nf_prev = nf
        nf = min(nf * 2, 512)
        sequence += [[
            nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
            norm_layer(nf),
            nn.LeakyReLU(0.2, True)
        ]]

        sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]

        if use_sigmoid:
            sequence += [[nn.Sigmoid()]]

        if getIntermFeat:
            for n in range(len(sequence)):
                setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
        else:
            sequence_stream = []
            for n in range(len(sequence)):
                sequence_stream += sequence[n]
            self.model = nn.Sequential(*sequence_stream)

    def forward(self, input):
        if self.getIntermFeat:
            res = [input]
            for n in range(self.n_layers+2):
                model = getattr(self, 'model'+str(n))
                res.append(model(res[-1]))
            return res[1:]
        else:
            return self.model(input)


class MultiscaleDiscriminator(nn.Module):
    def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d,
                 use_sigmoid=False, num_D=3, getIntermFeat=False):
        super(MultiscaleDiscriminator, self).__init__()
        self.num_D = num_D
        self.n_layers = n_layers
        self.getIntermFeat = getIntermFeat

        for i in range(num_D):
            netD = NLayerDiscriminator(input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat)
            if getIntermFeat:
                for j in range(n_layers + 2):
                    setattr(self, 'scale' + str(i) + '_layer' + str(j), getattr(netD, 'model' + str(j)))
            else:
                setattr(self, 'layer' + str(i), netD.model)

        self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)

    def singleD_forward(self, model, input):
        if self.getIntermFeat:
            result = [input]
            for i in range(len(model)):
                result.append(model[i](result[-1]))
            return result[1:]
        else:
            return [model(input)]

    def forward(self, input):
        num_D = self.num_D
        result = []
        input_downsampled = input
        for i in range(num_D):
            if self.getIntermFeat:
                model = [getattr(self, 'scale' + str(num_D - 1 - i) + '_layer' + str(j)) for j in
                         range(self.n_layers + 2)]
            else:
                model = getattr(self, 'layer' + str(num_D - 1 - i))
            result.append(self.singleD_forward(model, input_downsampled))
            if i != (num_D - 1):
                input_downsampled = self.downsample(input_downsampled)
        return result
相关标签: GAN