GAN生成CIFAR10
程序员文章站
2022-03-09 13:06:43
...
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
from torchvision.utils import save_image
import os
if not os.path.exists('./dc_img'):
os.mkdir('./dc_img')
def to_img(x):
out = 0.5 * (x + 1)
out = out.clamp(0, 255)
out = out.view(-1, 3, 32, 32)
return out
batch_size = 128
num_epoch = 100
z_dimension = 100 # noise dimension
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
mnist = datasets.CIFAR10('./data', transform=img_transform)
dataloader = DataLoader(mnist, batch_size=batch_size, shuffle=True,
num_workers=4)
class discriminator(nn.Module):
def __init__(self):
super(discriminator, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 32, 5, padding=2), # batch, 32, 32, 32
nn.LeakyReLU(0.2, True),
nn.AvgPool2d(2, stride=2), # batch, 32, 16, 16
)
self.conv2 = nn.Sequential(
nn.Conv2d(32, 64, 5, padding=2), # batch, 64, 16, 16
nn.LeakyReLU(0.2, True),
nn.AvgPool2d(2, stride=2) # batch, 64, 8, 8
)
self.fc = nn.Sequential(
nn.Linear(64 * 8 * 8, 1024),
nn.LeakyReLU(0.2, True),
nn.Linear(1024, 1),
nn.Sigmoid()
)
def forward(self, x):
'''
x: batch, width, height, channel=1
'''
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class generator(nn.Module):
def __init__(self, input_size, num_feature):
super(generator, self).__init__()
self.fc = nn.Linear(input_size, num_feature) # batch, 1024
self.br = nn.Sequential(
nn.BatchNorm2d(3),
nn.ReLU(True)
)
self.downsample1 = nn.Sequential(
nn.Conv2d(3, 50, 3, stride=1, padding=1), # batch, 50, 32, 32
nn.BatchNorm2d(50),
nn.ReLU(True)
)
self.downsample2 = nn.Sequential(
nn.Conv2d(50, 25, 3, stride=1, padding=1), # batch, 25, 32, 32
nn.BatchNorm2d(25),
nn.ReLU(True)
)
self.downsample3 = nn.Sequential(
nn.Conv2d(25, 3, 3, stride=1,padding=1), # batch, 3, 28, 28
nn.Tanh()
)
def forward(self, x):
x = self.fc(x)
x = x.view(x.size(0), 3, 32, 32)
x = self.br(x)
x = self.downsample1(x)
x = self.downsample2(x)
x = self.downsample3(x)
return x
D = discriminator().cuda() # discriminator model
G = generator(z_dimension, 1024*3).cuda() # generator model
criterion = nn.BCELoss() # binary cross entropy
d_optimizer = torch.optim.Adam(D.parameters(), lr=0.0003)
g_optimizer = torch.optim.Adam(G.parameters(), lr=0.0003)
# train
for epoch in range(num_epoch):
for i, (img, _) in enumerate(dataloader):
num_img = img.size(0)
# =================train discriminator
real_img = Variable(img).cuda()
real_label = Variable(torch.ones(num_img)).cuda()
fake_label = Variable(torch.zeros(num_img)).cuda()
# compute loss of real_img
real_out = D(real_img)
d_loss_real = criterion(real_out, real_label)
real_scores = real_out # closer to 1 means better
# compute loss of fake_img
z = Variable(torch.randn(num_img, z_dimension)).cuda()
fake_img = G(z)
fake_out = D(fake_img)
d_loss_fake = criterion(fake_out, fake_label)
fake_scores = fake_out # closer to 0 means better
# bp and optimize
d_loss = d_loss_real + d_loss_fake
d_optimizer.zero_grad()
d_loss.backward()
d_optimizer.step()
# ===============train generator
# compute loss of fake_img
z = Variable(torch.randn(num_img, z_dimension)).cuda()
fake_img = G(z)
output = D(fake_img)
g_loss = criterion(output, real_label)
# bp and optimize
g_optimizer.zero_grad()
g_loss.backward()
g_optimizer.step()
if (i + 1) % 100 == 0:
print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} '
'D real: {:.6f}, D fake: {:.6f}'
.format(epoch, num_epoch, d_loss.data.item(), g_loss.data.item(),
real_scores.data.mean(), fake_scores.data.mean()))
if epoch == 0:
real_images = to_img(real_img.cpu().data)
save_image(real_images, './dc_img/real_images.png')
fake_images = to_img(fake_img.cpu().data)
save_image(fake_images, './dc_img/fake_images-{}.png'.format(epoch + 1))
torch.save(G.state_dict(), './generator.pth')
torch.save(D.state_dict(), './discriminator.pth')