超分辨率重建部分算法总结1
程序员文章站
2022-03-09 13:07:01
...
<link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-3d4dc5c1de.css">
<div class="htmledit_views" id="content_views">
<p>超分辨率资源的精确列表和单图像超分辨率算法的基准。<br>
请参阅我实现的超分辨率算法:
TODO
Build a benckmark like SelfExSR_Code
State-of-the-art algorithms:
Classical Sparse Coding Method 经典稀疏编码
- ScSR [Web]
- Image super-resolution as sparse representation of raw image patches (CVPR2008), Jianchao Yang et al.
基于原始图像块稀疏表示的图像超分辨率
- Image super-resolution via sparse representation (TIP2010), Jianchao Yang et al.
基于稀疏表示的图像超分辨率
- Coupled dictionary training for image super-resolution (TIP2011), Jianchao Yang et al.
基于耦合字典训练的图像超分辨率重建
Anchored Neighborhood Regression Method 锚定邻域回归方法
- ANR [Web]
Anchored Neighborhood Regression for Fast Example-Based Super-Resolution (ICCV2013), Radu Timofte et al.
基于邻域快速回归的快速实例超分辨率
- A+ [Web]
A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution (ACCV2014), Radu Timofte et al.
- IA [Web]
Seven ways to improve example-based single image super resolution (CVPR2016), Radu Timofte et al.
Self-Exemplars
SelfExSR
- Single Image Super-Resolution from Transformed Self-Exemplars (CVPR2015), Jia-Bin Huang et al.
Bayes
NBSRF
- Naive Bayes Super-Resolution Forest (ICCV2015), Jordi Salvador et al.
朴素贝叶斯超分辨率森林
Deep Learning Method
SRCNN
- Image Super-Resolution Using Deep Convolutional Networks (ECCV2014), Chao Dong et al.
- Image Super-Resolution Using Deep Convolutional Networks (TPAMI2015), Chao Dong et al.
CSCN
- Deep Networks for Image Super-Resolution with Sparse Prior (ICCV2015), Zhaowen Wang et al.
- Robust Single Image Super-Resolution via Deep Networks with Sparse Prior (TIP2016), Ding Liu et al.
VDSR
- Accurate Image Super-Resolution Using Very Deep Convolutional Networks (CVPR2016), Jiwon Kim et al.
DRCN
- Deeply-Recursive Convolutional Network for Image Super-Resolution (CVPR2016), Jiwon Kim et al.
- 基于深度递归卷积网络的图像超分辨率重建
ESPCN
- Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network (CVPR2016), Wenzhe Shi et al.
- 基于高效亚像素卷积神经网络的实时单图像和视频超分辨率
- Is the deconvolution layer the same as a convolutional layer?
- Checkerboard artifact free sub-pixel convolution
FSRCNN
- Acclerating the Super-Resolution Convolutional Neural Network (ECCV2016), Dong Chao et al.
LapSRN
- Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution (CVPR 2017), Wei-Sheng Lai et al.
- 基于深拉普拉斯金字塔网络的快速和准确的超分辨率
EDSR
- Enhanced Deep Residual Networks for Single Image Super-Resolution (Winner of NTIRE2017 Super-Resolution Challenge), Bee Lim et al.
Perceptual Loss and GAN(损失函数上改进)
Perceptual Loss
- Perceptual Losses for Real-Time Style Transfer and Super-Resolution (ECCV2016), Justin Johnson et al.
- 基于感知损失的实时风格转移和超分辨率
SRGAN
- Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network (CVPR2017), Christian Ledig et al.
- 基于生成对抗网络的逼真图片的单一图像超分辨率
AffGAN
- AMORTISED MAP INFERENCE FOR IMAGE SUPER-RESOLUTION (ICLR2017), Casper Kaae Sønderby et al.
EnhanceNet
- EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis, Mehdi S. M. Sajjadi et al.
Video SR
VESPCN
- Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation (CVPR2017), Jose Caballero et al.
- 来自 https://github.com/huangzehao/Super-Resolution.Benckmark
上一篇: 超分辨率图像重建
下一篇: 前端“平稳退化”的理解