欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

超分辨率重建部分算法总结1

程序员文章站 2022-03-09 13:07:01
...
        <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-3d4dc5c1de.css">
                        <div class="htmledit_views" id="content_views">
                                        <p>超分辨率资源的精确列表和单图像超分辨率算法的基准。<br>

请参阅我实现的超分辨率算法:

TODO

Build a benckmark like SelfExSR_Code

State-of-the-art algorithms:

Classical Sparse Coding Method 经典稀疏编码

  • ScSR [Web]
  • Image super-resolution as sparse representation of raw image patches (CVPR2008), Jianchao Yang et al.

        基于原始图像块稀疏表示的图像超分辨率

  • Image super-resolution via sparse representation (TIP2010), Jianchao Yang et al.

       基于稀疏表示的图像超分辨率

  • Coupled dictionary training for image super-resolution (TIP2011), Jianchao Yang et al.

      基于耦合字典训练的图像超分辨率重建

Anchored Neighborhood Regression Method 锚定邻域回归方法

         Anchored Neighborhood Regression for Fast Example-Based Super-Resolution (ICCV2013), Radu Timofte et al.

        基于邻域快速回归的快速实例超分辨率

        A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution (ACCV2014), Radu Timofte et al.

        Seven ways to improve example-based single image super resolution (CVPR2016), Radu Timofte et al.

Self-Exemplars

SelfExSR 

  • Single Image Super-Resolution from Transformed Self-Exemplars (CVPR2015), Jia-Bin Huang et al.

Bayes

NBSRF 

  • Naive Bayes Super-Resolution Forest (ICCV2015), Jordi Salvador et al.

朴素贝叶斯超分辨率森林

Deep Learning Method

SRCNN 

  • Image Super-Resolution Using Deep Convolutional Networks (ECCV2014), Chao Dong et al.
  • Image Super-Resolution Using Deep Convolutional Networks (TPAMI2015), Chao Dong et al.

CSCN 

  • Deep Networks for Image Super-Resolution with Sparse Prior (ICCV2015), Zhaowen Wang et al.
  • Robust Single Image Super-Resolution via Deep Networks with Sparse Prior (TIP2016), Ding Liu et al.

VDSR 

  • Accurate Image Super-Resolution Using Very Deep Convolutional Networks (CVPR2016), Jiwon Kim et al.

DRCN

  • Deeply-Recursive Convolutional Network for Image Super-Resolution (CVPR2016), Jiwon Kim et al.
  • 基于深度递归卷积网络的图像超分辨率重建

ESPCN

  • Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network (CVPR2016), Wenzhe Shi et al.
  • 基于高效亚像素卷积神经网络的实时单图像和视频超分辨率
  • Is the deconvolution layer the same as a convolutional layer? 
  • Checkerboard artifact free sub-pixel convolution 

FSRCNN

  • Acclerating the Super-Resolution Convolutional Neural Network (ECCV2016), Dong Chao et al.

LapSRN

  • Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution (CVPR 2017), Wei-Sheng Lai et al.
  • 基于深拉普拉斯金字塔网络的快速和准确的超分辨率

EDSR 

  • Enhanced Deep Residual Networks for Single Image Super-Resolution (Winner of NTIRE2017 Super-Resolution Challenge), Bee Lim et al.

Perceptual Loss and GAN(损失函数上改进)

Perceptual Loss 

  • Perceptual Losses for Real-Time Style Transfer and Super-Resolution (ECCV2016), Justin Johnson et al.
  • 基于感知损失的实时风格转移和超分辨率

SRGAN

  • Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network (CVPR2017), Christian Ledig et al.
  • 基于生成对抗网络的逼真图片的单一图像超分辨率

AffGAN 

  • AMORTISED MAP INFERENCE FOR IMAGE SUPER-RESOLUTION (ICLR2017), Casper Kaae Sønderby et al.

EnhanceNet 

  • EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis, Mehdi S. M. Sajjadi et al.

Video SR

VESPCN 

  • Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation (CVPR2017), Jose Caballero et al.

  • 来自 https://github.com/huangzehao/Super-Resolution.Benckmark