人脸补全
程序员文章站
2022-05-28 19:39:34
...
人脸补全
需求:
根据人的上半边脸预测下半边脸,用各种算法取得的结果与原图比较
思考:
- 这是一个回归问题,不是分类问题(人脸数据不固定)
- 数据集一共包含40个人,每一个人10张照片,分布规律
- 每一个人取出8张照片作为训练数据,2张照片作为测试数据
- 样本特征和样本标签如何拆分?上半边脸作为样本特征,下半边脸作为特征标签
- 效果图
- 导包
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import fetch_olivetti_faces
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression,Ridge,Lasso
- 处理数据
faces = fetch_olivetti_faces()
data = faces.data
images = faces.images
target = faces.target
X_train = []
y_train = []
X_test = []
y_test = []
for i in range(40):
for j in range(10):
face_data = data[i*10+j]
up_face = face_data[:2048]
bottom_face = face_data[2048:]
if j < 8:
X_train.append(up_face)
y_train.append(bottom_face)
else:
X_test.append(up_face)
y_test.append(bottom_face)
- 训练数据
knn = KNeighborsRegressor()
linear = LinearRegression()
ridge = Ridge()
lasso = Lasso()
knn.fit(X_train,y_train)
linear.fit(X_train,y_train)
ridge.fit(X_train,y_train)
lasso.fit(X_train,y_train)
- 预测数据
y_ = knn.predict(X_test)
line_y_ = linear.predict(X_test)
ridge_y_ = ridge.predict(X_test)
lasso_y_ = lasso.predict(X_test)
# 把所有的预测结果保存的一个列表
pre_results = [y_,line_y_,ridge_y_,lasso_y_]
titles = ['True','KNN','Linear','Ridge','Lasso']
- 绘图
# 画布
plt.figure(figsize=(10,10))
for i in range(5):
# 先取出真实的脸
true_up_face = X_test[i].reshape(32,64)
true_bottom_face = y_test[i].reshape(32,64)
true_face = np.concatenate((true_up_face,true_bottom_face),axis=0)
axes = plt.subplot(5,5,5*i+1)
axes.set_title(titles[0])
axes.axis('off')
plt.imshow(true_face,cmap='gray')
for index,y_ in enumerate(pre_results):
# 获取到每一种算法模型预测出的下半边脸的数据
pre_bottom_face = y_[i].reshape(32,64)
pre_face = np.concatenate((true_up_face,pre_bottom_face),axis=0)
axes = plt.subplot(5,5,5*i+index+2)
axes.set_title(titles[index+1])
axes.axis('off')
plt.imshow(pre_face,cmap='gray')