欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Tensorflow多元一次回归示例

程序员文章站 2022-05-28 12:10:41
...

Tensorflow多元一次回归示例

下面的示例对:y = w1.x1 + w2.x2 + … +wn.xk + b 多元一次方程进行线性回归

#源码

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt


def normalize(X):
	"""
	归一化函数
    :param X:
    :return: x
    """
    mean = np.mean(X)
	std = np.std(X)
	X = (X - mean)/std
	return X


def appendBiasReshape(features_data, k, labels):
    """
    对训练特征进行整形:np.reshape(np.c_[np.ones(m),features],[m,k+1])  来源于对将多元一次方程式的表达:
    w1.x1 + w2.x2 + ... +wn.xk + b = y  => (1,x1,x2,x3,...,xk)(b,w1,w2,w3,...,wk)' = y
    => (x0,x1,x2,x3,...,xk)((w0,w1,w2,w3,...,wk)' = y 其中:x0=1,w0=b
    :param features_data: 训练数据矩阵
    :param k: 特征数(x向量维度)
    :param labels: 标签向量(y向量)
    :return:
    """
    m = features_data.shape[0]
    print("m=", m)
    n = labels.shape[0]
    print("n=",n)
    x = np.reshape(np.c_[np.ones(m),features_data],[m,k+1])
    y = np.reshape(labels,[n,1])
    return x,y

#1. 特征训练数据
X_train = np.matrix([[1,3,5,2],[3,3,1,2],[1,3,5,2],[3,3,1,2],[3,3,1,2],[3,3,1,2]])
Y_train = np.array([1,2,2,4,3,6])
#特征数量
k = len(X_train[0])

#2. 对训练数据整形,并且X_train,Y_train 必须转换为numpy矩阵或者数组
X_train,Y_train = appendBiasReshape(X_train, Y_train)
m = len(X_train)
n = k+1

#3. X,Y 训练输入站位符
X = tf.placeholder(tf.float32, name="X", shape=[m, n])
Y = tf.placeholder(tf.float32, name="Y")

#4. 定义权重向量
w = tf.Variable(tf.random_normal([n, 1]))

#5. 定义目标函数
Y_hat = tf.matmul(X, w)

#6. 定义损失函数
loss = tf.reduce_mean(tf.square(Y - Y_hat), name="loss")

#7, 选择梯度下降法优化器
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01, name="optimizer").minimize(loss)

#8. 定义变量初始化器
init_op = tf.global_variables_initializer()
total = []


with tf.Session() as sess:
    """ 执行变量初始化 """
    sess.run(init_op)
    """ 保存会话执行图 """
    writer = tf.summary.FileWriter("graphs", sess.graph)
    """ 对训练数据执行100次训练 """
    for i in range(100):
        """ 执行训练:输出每一次的损失函数值,通过feed_dict指定训练参数值"""
        _,l = sess.run([optimizer, loss], feed_dict={X: X_train, Y: Y_train})
        total.append(l)
        print('epoch{0}:loss ={1}'.format(i,l))
    writer.close()
    """ 从sess中获取训练后的权重向量 """
    w_value = sess.run(w)
    print('w_value ={0}, b_value:{1}'.format(w_value,X_train[:, 0]))


plt.plot(total)
plt.show()

TensorBoard 图示:
在控制台输入命令: tensorboard --logdir graphs
Tensorflow多元一次回归示例

相关标签: Tensorflow