欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

多元线性回归分析-Python&SPSS

程序员文章站 2022-05-28 12:10:59
...

原始数据在这里

1.观察数据

首先,用Pandas打开数据,并进行观察。

import numpy 
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

data = pd.read_csv('Folds5x2_pp.csv')
data.head() 

会看到数据如下所示:

多元线性回归分析-Python&SPSS

这份数据代表了一个循环发电厂,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结于每项具体的意思。

我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/AP/RH这4个是样本特征, 机器学习的目的就是得到一个线性回归模型,即: PE=θ01∗AT+θ2∗V+θ3∗AP+θ4∗RH 而需要学习的,就是θ01234这5个参数。

接下来对数据进行归一化处理:

data = (data - data.mean())/data.std()

因为回归线的截距θ0是不受样本特征影响的,因此我们在此可以设立一个X0=1,使得回归模型为:

PE=θ0*X01∗AT+θ2∗V+θ3∗AP+θ4∗RH

将方程向量化可得:

PE = hθ(x) = θx (θ应转置)

2.线性回归

在线性回归中,首先应建立 cost function,当 cost function 的值最小时所取得θ值为所求的θ。

在线性回归中,Cost function如下所示:

多元线性回归分析-Python&SPSS

因此,可以在Python中建立函数求损失方程:

def CostFunction(X,y,theta):
    inner = np.power((X*theta.T)-y,2)
    return np.sum(inner)/(2*len(X))

然后,设初始θ为=[0,0,0,0,0],可得到最初的J(θ)值为0.49994774247491858,代码如下所示

col = data.shape[1]
X = data.iloc[:,0:col-1]
y = data.iloc[:,col-1:col]
X = np.matrix(X.values)
y = np.matrix(y.values)
theta = np.matrix(np.array([0,0,0,0,0]))
temp = np.matrix(np.zeros(theta.shape))
CostFunction(X,y,theta)

接下来,有两种方法可以使用。1.梯度下降法(gradient descent)和 2.最小二乘法(normal equation)。在此我们使用梯度下降法来求解。

梯度下降法是求得J对θ的偏导数,通过设置步长,迭代使J(θ)逐步下降,从而求得局部最优解。公式如下所示:

多元线性回归分析-Python&SPSS

j:特征编号

m:样本编号

我们可以在Python中写出计算迭代后的θ和J(θ)

def gradientDescent(X,y,theta,alpha,iters):
    temp = np.matrix(np.zeros(theta.shape))
    parameters = int(theta.ravel().shape[1])
    cost = np.zeros(iters)
    for i in range(iters):
        error = (X*theta.T)-y
        
        for j in range(parameters):
            term = np.multiply(error,X[:,j])
            temp[0,j] = theta[0,j] - (alpha/len(X))*np.sum(term)
            
        theta = temp
        cost[i] = CostFunction(X,y,theta)
        
    return theta,cost
在此,我设置初始的α为0.1,可求得迭代1000次后θ01234的值分别是
 -5.22080706e-14,-8.63485491e-01,-1.74182863e-01,2.16058120e-02,-1.35205248e-01

此时 J(θ)的值为0.0379648。

通过,可视化J(θ)和迭代次数可以发现,J(θ)收敛的非常快。

多元线性回归分析-Python&SPSS

画图观察预测值和损失值,距离直线约近说明损失越小:

predicted = X*g.T
predicted = predicted.flatten().A[0]
y_f= y.flatten().A[0]
fig, ax = plt.subplots()
ax.scatter(y_f,predicted)
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()

多元线性回归分析-Python&SPSS

3.sckit-learn

因为J(θ)收敛的太快了…所以我又用sckit-learn和SPSS验证了一下。
先看sckit-learn,在sklearn中,线性回归是使用的最小二乘法而不是梯度下降法,用起来也十分的简单。

代码如下:

from sklearn import linear_model  
model = linear_model.LinearRegression()  
model.fit(X, y)  
打印出θ值后发现和梯度下降法算出来的相差无几,θ01234的值分别是:
0,-0.86350078,-0.17417154,0.02160293,-0.13521023

4.SPSS

在看看SPSS

同样先将数据标准化后进行线

多元线性回归分析-Python&SPSS

  然后进行线性回归分析得到结果:

多元线性回归分析-Python&SPSS

嘛…和前面两种方法的结果也差不多…就这样吧。