[BZOJ3626][LNOI2014]LCA(离线处理+树剖+线段树)
程序员文章站
2022-05-27 14:37:48
...
Address
https://www.lydsy.com/JudgeOnline/problem.php?id=3626
Solution
下面强制使点的编号从 开始计数。
先考虑一个简单问题:
在一棵树上,给定一些黑点,每次给出一个点 ,求:
容易想到将枚举黑点 转化为枚举 的深度:
为根到 的路径上深度为 的点, 表示 的子树内黑点个数。
特别地, 。
把上式化一下:
于是,只需要维护每个节点的 之后,查询 到根路径上所有点的 之和即可。
回到问题。将一个询问拆成两个:
(1)将 内的点设为黑点,其他为白点。
(2)将 内的点设为黑点,其他为白点。
拆询问之后将形如 的询问按照 离线排序。
这样,就能从 到 动态地加入黑点并询问了。
把 变成黑点后, 到根的路径上所有点的 加上 。
所以,我们要实现路径加一和路径求和操作。
用 树剖 + 线段树 可以实现。
Code
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define For(i, a, b) for (i = a; i <= b; i++)
#define Tree(u) for (int e = adj[u], v; e; e = nxt[e]) if ((v = go[e]) != fu)
#define p2 p << 1
#define p3 p << 1 | 1
using namespace std;
inline int read() {
int res = 0; bool bo = 0; char c;
while (((c = getchar()) < '0' || c > '9') && c != '-');
if (c == '-') bo = 1; else res = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
res = (res << 3) + (res << 1) + (c - 48);
return bo ? ~res + 1 : res;
}
typedef long long ll;
const int N = 5e4 + 5, M = N << 1, L = M << 1, PYZ = 201314;
int n, q, ecnt, nxt[M], adj[N], go[M], fa[N], dep[N], sze[N],
son[N], top[N], dfn[N], QAQ, QWQ, add[L], ans[N]; ll T[L];
struct cyx {
int i, u, id;
} orz[M];
bool comp(cyx a, cyx b) {
return a.i < b.i;
}
void add_edge(int u, int v) {
nxt[++ecnt] = adj[u]; adj[u] = ecnt; go[ecnt] = v;
nxt[++ecnt] = adj[v]; adj[v] = ecnt; go[ecnt] = u;
}
void dfs1(int u, int fu) {
dep[u] = dep[fa[u] = fu] + (sze[u] = 1);
Tree(u) {
dfs1(v, u); sze[u] += sze[v];
if (sze[v] > sze[son[u]]) son[u] = v;
}
}
void dfs2(int u, int fu) {
if (son[u]) {
top[son[u]] = top[u];
dfn[son[u]] = ++QAQ;
dfs2(son[u], u);
}
Tree(u) {
if (v == son[u]) continue;
top[v] = v; dfn[v] = ++QAQ;
dfs2(v, u);
}
}
void init() {
dfs1(1, 0); QAQ = top[1] = dfn[1] = 1;
dfs2(1, 0);
}
void down(int p) {
add[p2] += add[p]; add[p3] += add[p];
add[p] = 0;
}
void upt(int l, int r, int p) {
int mid = l + r >> 1;
T[p] = T[p2] + 1ll * (mid - l + 1) * add[p2]
+ T[p3] + 1ll * (r - mid) * add[p3];
}
void change(int l, int r, int s, int e, int v, int p) {
if (l == s && r == e) return (void) (add[p] += v);
int mid = l + r >> 1; down(p);
if (e <= mid) change(l, mid, s, e, v, p2);
else if (s >= mid + 1) change(mid + 1, r, s, e, v, p3);
else change(l, mid, s, mid, v, p2),
change(mid + 1, r, mid + 1, e, v, p3);
upt(l, r, p);
}
ll ask(int l, int r, int s, int e, int p) {
if (l == s && r == e) return T[p] + 1ll * (r - l + 1) * add[p];
int mid = l + r >> 1; down(p); ll res;
if (e <= mid) res = ask(l, mid, s, e, p2);
else if (s >= mid + 1) res = ask(mid + 1, r, s, e, p3);
else res = ask(l, mid, s, mid, p2) +
ask(mid + 1, r, mid + 1, e, p3);
return upt(l, r, p), res;
}
void path_change(int u, int v, int w) {
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
change(1, n, dfn[top[u]], dfn[u], w, 1);
u = fa[top[u]];
}
if (dfn[u] > dfn[v]) swap(u, v);
change(1, n, dfn[u], dfn[v], w, 1);
}
ll path_ask(int u, int v) {
ll res = 0; while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
res += ask(1, n, dfn[top[u]], dfn[u], 1);
u = fa[top[u]];
}
if (dfn[u] > dfn[v]) swap(u, v);
return res + ask(1, n, dfn[u], dfn[v], 1);
}
int main() {
int i, l, r, x, p = 1; n = read(); q = read();
For (i, 2, n) x = read() + 1, add_edge(x, i);
init(); For (i, 1, q) {
l = read() + 1; r = read() + 1; x = read() + 1;
orz[++QWQ] = (cyx) {l - 1, x, QWQ};
orz[++QWQ] = (cyx) {r, x, QWQ};
}
sort(orz + 1, orz + QWQ + 1, comp);
For (i, 1, QWQ) {
if (!orz[i].i) continue;
while (p <= orz[i].i) path_change(1, p, 1), p++;
int res = path_ask(1, orz[i].u);
if (orz[i].id & 1) ans[(orz[i].id - 1 >> 1) + 1] -= res;
else ans[(orz[i].id - 1 >> 1) + 1] += res;
}
For (i, 1, q) printf("%d\n", ans[i] % PYZ);
return 0;
}
上一篇: cesium(坐标转换)
推荐阅读
-
HDU 4630 No Pain No Game(线段树离线处理)
-
CodeForces 1000F One Occurrence( 离线处理+线段树解法)
-
HDU - 3333 Turing Tree(线段树+离线处理)
-
HDU3333 Turing Tree(线段树 离线处理)
-
【BZOJ3626】[LNOI2014]LCA 离线+树链剖分+线段树
-
[BZOJ3626] [LNOI2014] LCA 离线 树链剖分
-
bzoj3626: [LNOI2014]LCA(离线处理+树链剖分)
-
BZOJ3626[LNOI2014]LCA——树链剖分+线段树
-
BZOJ3626 [LNOI2014]LCA 树链剖分 线段树
-
【bzoj3626】[LNOI2014]LCA 树链剖分+线段树