欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

python学习笔记(四):pandas基础

程序员文章站 2022-05-26 21:42:10
...

pandas 基础

serise

import pandas as pd
from pandas import Series, DataFrame
obj = Series([4, -7, 5, 3])
obj
0    4
1   -7
2    5
3    3
dtype: int64
obj.values
array([ 4, -7,  5,  3], dtype=int64)
obj.index
RangeIndex(start=0, stop=4, step=1)
obj[[1,3]]
# 跳着选取数据
1   -7
3    3
dtype: int64
obj[1:3]
1   -7
2    5
dtype: int64
pd.isnull(obj)
0    False
1    False
2    False
3    False
dtype: bool
  • reindex可以用来插值
obj.reindex(range(5), method = 'ffill')
0    4
1   -7
2    5
3    3
4    3
dtype: int64
  • 标签切片是闭区间的

dataframe

data = {'state': ['asd','qwe','sdf','ert'],
       'year': [2000, 2001, 2002, 2003],
       'pop': [1.5,1.7,3.6,2.4]}
data = DataFrame(data)
data
pop state year
0 1.5 asd 2000
1 1.7 qwe 2001
2 3.6 sdf 2002
3 2.4 ert 2003
data.year
# 比r里提取列要方便点
0    2000
1    2001
2    2002
3    2003
Name: year, dtype: int64
data['debt'] = range(4)
data
pop state year debt
0 1.5 asd 2000 0
1 1.7 qwe 2001 1
2 3.6 sdf 2002 2
3 2.4 ert 2003 3
  • index是不能修改的
a = data.index
a[1] = 6
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

<ipython-input-9-57677294f950> in <module>()
      1 a = data.index
----> 2 a[1] = 6


F:\Anaconda\lib\site-packages\pandas\core\indexes\base.py in __setitem__(self, key, value)
   1668 
   1669     def __setitem__(self, key, value):
-> 1670         raise TypeError("Index does not support mutable operations")
   1671 
   1672     def __getitem__(self, key):


TypeError: Index does not support mutable operations
data.columns
Index(['pop', 'state', 'year', 'debt'], dtype='object')
  • .ix标签索引功能,输入行和列
  • 不加.ix只能选取其中的某列或某行,不能列与行同时选取
data[:3]
pop state year debt
0 1.5 asd 2000 0
1 1.7 qwe 2001 1
2 3.6 sdf 2002 2
data.ix[:,:3]
pop state year
0 1.5 asd 2000
1 1.7 qwe 2001
2 3.6 sdf 2002
3 2.4 ert 2003
  • 删除某列用drop,axis = 0表示行,1表示列
  • 删除后原数据不变
data.drop(0,axis=0)
pop state year debt
1 1.7 qwe 2001 1
2 3.6 sdf 2002 2
3 2.4 ert 2003 3
data.drop('year', axis=1)
pop state debt
0 1.5 asd 0
1 1.7 qwe 1
2 3.6 sdf 2
3 2.4 ert 3
data
pop state year debt
0 1.5 asd 2000 0
1 1.7 qwe 2001 1
2 3.6 sdf 2002 2
3 2.4 ert 2003 3
import numpy as np
df = DataFrame(np.arange(9).reshape(3, 3))
df
0 1 2
0 0 1 2
1 3 4 5
2 6 7 8
  • applymap()可以对dataframe每一个元素运用函数
  • apply()可以对每一维数组运用函数
df.applymap(lambda x: '%.2f' % x)
0 1 2
0 0.00 1.00 2.00
1 3.00 4.00 5.00
2 6.00 7.00 8.00
data.sort_values(by='pop')
# 对某一列排序
pop state year debt
0 1.5 asd 2000 0
1 1.7 qwe 2001 1
3 2.4 ert 2003 3
2 3.6 sdf 2002 2
data.describe()
pop year debt
count 4.000000 4.000000 4.000000
mean 2.300000 2001.500000 1.500000
std 0.948683 1.290994 1.290994
min 1.500000 2000.000000 0.000000
25% 1.650000 2000.750000 0.750000
50% 2.050000 2001.500000 1.500000
75% 2.700000 2002.250000 2.250000
max 3.600000 2003.000000 3.000000
df.isin([1])
0 1 2
0 False True False
1 False False False
2 False False False
  • None、NaN会被当作NA处理
  • df.shape不加括号相当于dim()
df.shape
(3, 3)
  • dropna删除缺失值
df.ix[:1, :1] = None
df
0 1 2
0 NaN NaN 2
1 NaN NaN 5
2 6.0 7.0 8
  • 填充缺失值可以调用字典,不同行添加不同值
df.fillna({0:11, 1:22})
0 1 2
0 11.0 22.0 2
1 11.0 22.0 5
2 6.0 7.0 8
df
0 1 2
0 NaN NaN 2
1 NaN NaN 5
2 6.0 7.0 8
df.fillna({0:11, 1:22}, inplace=True)
0 1 2
0 11.0 22.0 2
1 11.0 22.0 5
2 6.0 7.0 8
df
0 1 2
0 11.0 22.0 2
1 11.0 22.0 5
2 6.0 7.0 8
  • inplace修改对象不产生副本