欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Pytorch极简入门教程(七)—— 划分训练集和测试集

程序员文章站 2022-05-26 19:19:39
...
# -*- coding: utf-8 -*-
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
import torch
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from torch import nn

data = pd.read_csv("dataset/HR.csv")
print("data.head():\t", data.head())
data.info()
print("data.info():\t", data.info())
data.part.unique()  # 查看part里面的东西
print("data.part.unique()", data.part.unique())
data.salary.unique()  # 查看salary里面存在的东西
print("data.salary.unique()", data.salary.unique())
# 分组查看
data.groupby(["salary", "part"]).size()
print("data.groupby(['salary', 'part']).size()", data.groupby(['salary', 'part']).size())
# 将特征转换成数值化(独热编码)
pd.get_dummies(data.salary)
print("pd.get_dummies(data.salary):\t", pd.get_dummies(data.salary))

# 将salary转换成独热编码添加至原有数据
data = data.join(pd.get_dummies(data.salary))
print("data.head()):\t", data.head())
# 将part转换成独热编码添加至原有数据
data = data.join(pd.get_dummies(data.part))  # 10个职业 独热编码扩展10位
# 删除"salary"的特征
del data["salary"]
del data["part"]
data.head()
print("data.head():\t", data.head())

# 查看是否会离职数据
data.left.value_counts()  # value_counts() 值计数的方式
print("data.left.value_counts():\n", data.left.value_counts())

Y_data = data.left.values.reshape(-1, 1)
print("Y_data.shape:\t", Y_data.shape)

# Tensor 查看行传可以用.size()或者.shape() 但是
Y = torch.from_numpy(Y_data).type(torch.float32)
print("Y.shape", Y.shape)  # == print("Y.size()", Y.size())
# 将不是标签的全部元素组成列表
"""
M = [c for c in data.columns if c!= "left"] 
print("M:\t", X_data)
"""
X_data = data[[c for c in data.columns if c != 'left']].values  # 取出列表的中各个元素所对应的值
"""
    两种方式进行数据类型转换
    如果numpy上转换 则用.astype(np.float32)
    如果torch上转换 则用.type(torch.float32)
"""
X = torch.from_numpy(X_data.astype(np.float32))
# X =torch.from_numpy(X_data).type(torch.float32)
print("X:\t", X)

print("X.size():\t", X.shape)  # X.size()和X.shape等价
"""""""""""""""""""""""""""""""""""""""""""""""
创建模型:
from torch import nn
自定义模型:
nn.Module: 继承这个类
__init__:初始化所有的层
forward: 定义模型的运算过程 (前向传播的过程)
"""""""""""""""""""""""""""""""""""""""""""""""
"""
# 自定义类 方法一
class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.liner_1 = nn.Linear(20, 64)
        self.liner_2 = nn.Linear(64, 64)
        self.liner_3 = nn.Linear(64, 1)
        self.relu = nn.ReLU()  # 初始化relu
        self.sigmoid = nn.Sigmoid() # 初始化sigmoid

    def forward(self, input):
        x = self.Liner_1(input)
        x = self.relu(x)
        x = self.Liner_2(x)
        x = self.rele(x)
        x = self.Liner_3(x)
        x = self.sigmod(x)
        return x
"""

"""""""""""""""""""""""""""""""""""
方法的改写: 方法二
import torch.nn.functional as F
class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.liner_1 = nn.Linear(20, 64)
        self.liner_2 = nn.Linear(64, 64)
        self.liner_3 = nn.Linear(64, 1)


    def forward(self, input):
        x = F.relu(self.Liner_1(input))
        x = F.relu(self.Liner_2(x))
        x = F.sigmoid(self.Liner_3(x))
        return x
"""""""""""""""""""""""""""""""""""
import torch.nn.functional as F


class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.Liner_1 = nn.Linear(20, 64)
        self.Liner_2 = nn.Linear(64, 64)
        self.Liner_3 = nn.Linear(64, 1)

    def forward(self, input):
        x = F.relu(self.Liner_1(input))
        x = F.relu(self.Liner_2(x))
        x = F.sigmoid(self.Liner_3(x))
        return x


"""
model = Model() # 模型的实例化
print("model:\t", model)
"""
lr = 0.001


def get_model():
    model = Model()
    opt = torch.optim.Adam(model.parameters(), lr=lr)
    return model, opt


model, optim = get_model()  # return  返回model、optim
"""
定义损失函数
"""
loss_fn = nn.BCELoss()
# 定义优化器

batch = 64
no_of_batch = len(data) // batch
epochs = 100

"""
添加验证:
了解过拟合与欠拟合
过拟合:对于训练数据过度拟合,对于未知数据预测很差
欠拟合:对于训练数据拟合不足,对于未知数据预测很差
"""
"""
需要用到机器学习的库
pip install sklearn -i https://pipy,doubanio.com/simple
在Jupyter Notebook可以采用
!pip install sklearn -i https://pypi.doubanio.com/simple
"""
from sklearn.model_selection import train_test_split
train_x, test_x, train_y, test_y = train_test_split(X, Y)
print("type(train_x):\t", type(train_x))
print("X_data.shape:\t", X_data.shape)
print("train_x.shape:\t{}, test_x.shape:\t{}".format(train_x.shape, test_x.shape))

train_ds = TensorDataset(train_x, train_y)
train_dl = DataLoader(train_ds, batch_size=batch, shuffle=True)

test_ds = TensorDataset(test_x, test_y)
test_dl = DataLoader(test_ds, batch_size=batch) # 测试集不要乱序

data.head():	    satisfaction_level  last_evaluation  ...   part  salary
0                0.38             0.53  ...  sales     low
1                0.80             0.86  ...  sales  medium
2                0.11             0.88  ...  sales  medium
3                0.72             0.87  ...  sales     low
4                0.37             0.52  ...  sales     low

[5 rows x 10 columns]
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14999 entries, 0 to 14998
Data columns (total 10 columns):
 #   Column                 Non-Null Count  Dtype  
---  ------                 --------------  -----  
 0   satisfaction_level     14999 non-null  float64
 1   last_evaluation        14999 non-null  float64
 2   number_project         14999 non-null  int64  
 3   average_montly_hours   14999 non-null  int64  
 4   time_spend_company     14999 non-null  int64  
 5   Work_accident          14999 non-null  int64  
 6   left                   14999 non-null  int64  
 7   promotion_last_5years  14999 non-null  int64  
 8   part                   14999 non-null  object 
 9   salary                 14999 non-null  object 
dtypes: float64(2), int64(6), object(2)
memory usage: 1.1+ MB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14999 entries, 0 to 14998
Data columns (total 10 columns):
 #   Column                 Non-Null Count  Dtype  
---  ------                 --------------  -----  
 0   satisfaction_level     14999 non-null  float64
 1   last_evaluation        14999 non-null  float64
 2   number_project         14999 non-null  int64  
 3   average_montly_hours   14999 non-null  int64  
 4   time_spend_company     14999 non-null  int64  
 5   Work_accident          14999 non-null  int64  
 6   left                   14999 non-null  int64  
 7   promotion_last_5years  14999 non-null  int64  
 8   part                   14999 non-null  object 
 9   salary                 14999 non-null  object 
dtypes: float64(2), int64(6), object(2)
memory usage: 1.1+ MB
data.info():	 None
data.part.unique() ['sales' 'accounting' 'hr' 'technical' 'support' 'management' 'IT'
 'product_mng' 'marketing' 'RandD']
data.salary.unique() ['low' 'medium' 'high']
data.groupby(['salary', 'part']).size() salary  part       
high    IT               83
        RandD            51
        accounting       74
        hr               45
        management      225
        marketing        80
        product_mng      68
        sales           269
        support         141
        technical       201
low     IT              609
        RandD           364
        accounting      358
        hr              335
        management      180
        marketing       402
        product_mng     451
        sales          2099
        support        1146
        technical      1372
medium  IT              535
        RandD           372
        accounting      335
        hr              359
        management      225
        marketing       376
        product_mng     383
        sales          1772
        support         942
        technical      1147
dtype: int64
pd.get_dummies(data.salary):	        high  low  medium
0         0    1       0
1         0    0       1
2         0    0       1
3         0    1       0
4         0    1       0
...     ...  ...     ...
14994     0    1       0
14995     0    1       0
14996     0    1       0
14997     0    1       0
14998     0    1       0

[14999 rows x 3 columns]
data.head()):	    satisfaction_level  last_evaluation  number_project  ...  high  low  medium
0                0.38             0.53               2  ...     0    1       0
1                0.80             0.86               5  ...     0    0       1
2                0.11             0.88               7  ...     0    0       1
3                0.72             0.87               5  ...     0    1       0
4                0.37             0.52               2  ...     0    1       0

[5 rows x 13 columns]
data.head():	    satisfaction_level  last_evaluation  ...  support  technical
0                0.38             0.53  ...        0          0
1                0.80             0.86  ...        0          0
2                0.11             0.88  ...        0          0
3                0.72             0.87  ...        0          0
4                0.37             0.52  ...        0          0

[5 rows x 21 columns]
data.left.value_counts():
 0    11428
1     3571
Name: left, dtype: int64
Y_data.shape:	 (14999, 1)
Y.shape torch.Size([14999, 1])
X:	 tensor([[0.3800, 0.5300, 2.0000,  ..., 1.0000, 0.0000, 0.0000],
        [0.8000, 0.8600, 5.0000,  ..., 1.0000, 0.0000, 0.0000],
        [0.1100, 0.8800, 7.0000,  ..., 1.0000, 0.0000, 0.0000],
        ...,
        [0.3700, 0.5300, 2.0000,  ..., 0.0000, 1.0000, 0.0000],
        [0.1100, 0.9600, 6.0000,  ..., 0.0000, 1.0000, 0.0000],
        [0.3700, 0.5200, 2.0000,  ..., 0.0000, 1.0000, 0.0000]])
X.size():	 torch.Size([14999, 20])
type(train_x):	 <class 'torch.Tensor'>
X_data.shape:	 (14999, 20)
train_x.shape:	torch.Size([11249, 20]), test_x.shape:	torch.Size([3750, 20])