Keras模型转成tensorflow的.pb
程序员文章站
2022-05-26 18:02:04
...
Keras的.h5模型转成tensorflow的.pb格式模型,方便后期的前端部署。直接上代码
from keras.models import Model
from keras.layers import Dense, Dropout
from keras.applications.mobilenet import MobileNet
from keras.applications.mobilenet import preprocess_input
from keras.preprocessing.image import load_img, img_to_array
import tensorflow as tf
from keras import backend as K
import os
base_model = MobileNet((None, None, 3), alpha=1, include_top=False, pooling='avg', weights=None)
x = Dropout(0.75)(base_model.output)
x = Dense(10, activation='softmax')(x)
model = Model(base_model.input, x)
model.load_weights('mobilenet_weights.h5')
def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
from tensorflow.python.framework.graph_util import convert_variables_to_constants
graph = session.graph
with graph.as_default():
freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
output_names = output_names or []
output_names += [v.op.name for v in tf.global_variables()]
input_graph_def = graph.as_graph_def()
if clear_devices:
for node in input_graph_def.node:
node.device = ""
frozen_graph = convert_variables_to_constants(session, input_graph_def,
output_names, freeze_var_names)
return frozen_graph
output_graph_name = 'NIMA.pb'
output_fld = ''
#K.set_learning_phase(0)
print('input is :', model.input.name)
print ('output is:', model.output.name)
sess = K.get_session()
frozen_graph = freeze_session(K.get_session(), output_names=[model.output.op.name])
from tensorflow.python.framework import graph_io
graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=False)
print('saved the constant graph (ready for inference) at: ', os.path.join(output_fld, output_graph_name))