欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  数据库

URAL 1348. Goat in the Garden 2[求点到线段的距离]

程序员文章站 2022-05-26 12:52:26
...

题目链接:http://acm.timus.ru/problem.aspx?space=1num=1348 题目的意思是:求一个点到线段的最短距离和最长距离。。 最长距离比较容易,就是求点到线段两个端点较长的那个距离就是ans。 最短距离就比较有意思了。。。 可能的情况就是点到线段的垂线的垂足

题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1348

题目的意思是:求一个点到线段的最短距离和最长距离。。

最长距离比较容易,就是求点到线段两个端点较长的那个距离就是ans。

最短距离就比较有意思了。。。

可能的情况就是点到线段的垂线的垂足在线段内,还有就是垂足在线段外。。。

在线段内的话,那么应用叉积求面积+底面长度可以求得垂线长度也就是最短距离。。

如果在线段外的话,最短距离就是点到线段的两个端点的最小值。。

那么问题就来了。。怎么判断垂足在线段内还是在线段外的呢??

详细见代码。 - - 。。。

Code:

#include 
#include 
#include 
#include 
#include 
using namespace std;

const double eps = 1e-8;
const double pi = acos(-1);
//点
struct POINT
{
    double x, y;
    POINT(){ }
    POINT(double a, double b){
        x = a;
        y = b;
    }
};
//线段
struct Seg
{
    POINT a, b;
    Seg() { }
    Seg(POINT x, POINT y){
        a = x;
        b = y;
    }
};

//直线
struct Line
{
    POINT a, b;
    Line() {}
    Line(POINT x, POINT y){
        a = x;
        b = y;
    }
};

//叉乘
double cross(POINT o, POINT a, POINT b)
{
    return (a.x - o.x) * (b.y - o.y) - (b.x - o.x) * (a.y - o.y);
}

//求两点间的距离
double dis(POINT a, POINT b)
{
    return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
Seg s;
POINT p;
double L;
//点到直线的距离..
double PointToLine(POINT p, Line l)
{
    return fabs(cross(p, l.a, l.b)) / dis(l.a, l.b);
}
//线段到直线的距离..
double PointToSeg(POINT p, Seg s)
{
    POINT tmp = p;
    tmp.x += s.a.y - s.b.y;
    tmp.y += s.b.x - s.a.x;
    if(cross(s.a, p, tmp) * cross(s.b, p, tmp) >= 0){
        return min(dis(p, s.a), dis(p, s.b));
    }
    return PointToLine(p, Line(s.a, s.b));
}

void solve()
{
    double ans1 = PointToSeg(p, s), ans2 = max(dis(p, s.a), dis(p, s.b));
    printf("%.2lf\n%.2lf\n", ans1 > L ? ans1 - L : 0, ans2 > L ? ans2 - L : 0);
    return ;
}

int main()
{
//    freopen("11.txt", "r", stdin);
    while(~scanf("%lf %lf %lf %lf", &s.a.x, &s.a.y, &s.b.x, &s.b.y)){
        scanf("%lf %lf %lf", &p.x, &p.y, &L);
        solve();
    }
    return 0;
}

--->

好吧,还需要好好的学习。。。