在reduce中进行join
程序员文章站
2022-05-26 11:12:38
...
package reducejoin;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class TableBean implements Writable {
private String orderId;
private String pId;
private int amount;
private String pname;
private String flag;
public TableBean() {
super();
}
public TableBean(String orderId, String pId, int amount, String pname, String flag) {
super();
this.orderId = orderId;
this.pId = pId;
this.amount = amount;
this.pname = pname;
this.flag = flag;
}
public String getOrderId() {
return orderId;
}
public void setOrderId(String orderId) {
this.orderId = orderId;
}
public String getpId() {
return pId;
}
public void setpId(String pId) {
this.pId = pId;
}
public int getAmount() {
return amount;
}
public void setAmount(int amount) {
this.amount = amount;
}
public String getPname() {
return pname;
}
public void setPname(String pname) {
this.pname = pname;
}
public String getFlag() {
return flag;
}
public void setFlag(String flag) {
this.flag = flag;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(orderId);
out.writeUTF(pId);
out.writeInt(amount);
out.writeUTF(pname);
out.writeUTF(flag);
}
@Override
public void readFields(DataInput in) throws IOException {
this.orderId = in.readUTF();
this.pId = in.readUTF();
this.amount = in.readInt();
this.pname = in.readUTF();
this.flag = in.readUTF();
}
@Override
public String toString() {
return pId + "\t" + pname + "\t" + amount;
}
}
package reducejoin;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import java.io.IOException;
public class TableMapper extends Mapper<LongWritable, Text, Text, TableBean> {
String name;
TableBean tableBean = new TableBean();
Text k = new Text();
@Override
protected void setup(Context context) throws IOException, InterruptedException {
FileSplit inputSplit = (FileSplit) context.getInputSplit();
name = inputSplit.getPath().getName();
}
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// id pid amount
// 1001 01 1
if (name.startsWith("order")) {
//代表产品订单
String[] fields = value.toString().split("\t");
tableBean.setOrderId(fields[0]);
tableBean.setpId(fields[1]);
tableBean.setAmount(Integer.parseInt(fields[2]));
tableBean.setPname("");
tableBean.setFlag("order");
k.set(fields[1]);
// pid pname
// 01 小米
}else {
String[] fields = value.toString().split("\t");
tableBean.setOrderId("");
tableBean.setpId(fields[0]);
tableBean.setAmount(0);
tableBean.setPname(fields[1]);
tableBean.setFlag("product");
k.set(fields[0]);
}
context.write(k, tableBean);
}
}
package reducejoin;
import javafx.scene.control.Tab;
import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.util.ArrayList;
public class TableReducer extends Reducer<Text, TableBean, TableBean, NullWritable> {
@Override
protected void reduce(Text key, Iterable<TableBean> values, Context context) throws IOException, InterruptedException {
ArrayList<TableBean> tableBeans = new ArrayList<>();
TableBean productBean = new TableBean();
for (TableBean tableBean : values) {
if ("order".equals(tableBean.getFlag())){
//此时 bean中全是订单,但只是包含的引用信息,需要将其copy
TableBean tmpBean = new TableBean();
try {
BeanUtils.copyProperties(tmpBean, tableBean);
tableBeans.add(tmpBean);
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
}else {
try {
BeanUtils.copyProperties(productBean, tableBean);
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
}
}
for (TableBean orderBean :tableBeans) {
orderBean.setPname(productBean.getPname());
context.write(orderBean, NullWritable.get());
}
}
}
package reducejoin;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class TableDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
args = new String[]{"/home/torrent/input", "/home/torrent/output"};
// 1 获取配置信息,或者job对象实例
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration);
// 2 指定本程序的jar包所在的本地路径
job.setJarByClass(TableDriver.class);
// 3 指定本业务job要使用的Mapper/Reducer业务类
job.setMapperClass(TableMapper.class);
job.setReducerClass(TableReducer.class);
// 4 指定Mapper输出数据的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(TableBean.class);
// 5 指定最终输出的数据的kv类型
job.setOutputKeyClass(TableBean.class);
job.setOutputValueClass(NullWritable.class);
// 6 指定job的输入原始文件所在目录
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
转载于:https://www.jianshu.com/p/2b713fe0c942
上一篇: 在react中封装能够复用的组件
下一篇: maven配置tomcat9.0