欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

如何使用Hadoop的DistributedCache

程序员文章站 2022-05-25 10:10:04
...
DistributedCache是Hadoop的一个分布式文件缓存类,使用它有时候能完成一些比较方便的事,DistributedCache第一个比较方便的作用就是来完成分布式文件共享这件事,第二个比较有用的场景,就是在执行一些join操作时,将小表放入cache中,来提高连接效率。


那么,散仙今天要介绍的是如何使用DistributedCache来共享全局的缓存文件。

下面我们先通过一个表格来看下,在hadoop中,使用全局变量或全局文件共享的几种方法
序号 方法
1 使用Configuration的set方法,只适合数据内容比较小的场景
2 将共享文件放在HDFS上,每次都去读取,效率比较低
3 将共享文件放在DistributedCache里,在setup初始化一次后,即可多次使用,缺点是不支持修改操作,仅能读取



本篇散仙,将重点介绍,使用DistributedCache的方法,来共享一些全局配置文件,或变量,通过DistributedCache的addCacheFile方法,我们把HDFS上的一些文件,在hadoop任务启动时,就载入缓存里面,以供全局使用,使用这个方法时,我们需要注意几点,首先我们的本地文件,需要上传到HDFS上,然后再这个方法里,写入加载路径,接下来,我们就可以,在setup初始化时,读取出,其内容,然后在map或reduce方法,执行时,就可以实时的使用这个文件的一些内容了。

散仙,测试共享的一个文件内容如下:


如何使用Hadoop的DistributedCache
            
    
    博客分类: Hadoop hadoopDistributedCache 
代码如下,注意散仙在setup方法里,读取了文件内容,并打印:
package com.qin.testdistributed;

import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.Scanner;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.pattern.LogEvent;
 
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.qin.operadb.WriteMapDB;
 

/**
 * 测试hadoop的全局共享文件
 * 使用DistributedCached
 * 
 * 大数据技术交流群: 37693216
 * @author qindongliang
 * 
 * ***/
public class TestDistributed {
	
	
	private static Logger logger=LoggerFactory.getLogger(TestDistributed.class);
	
	
	
	
	
	private static class FileMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
		
	     	Path path[]=null;
	     	
		/**
		 * Map函数前调用
		 * 
		 * */
		@Override
		protected void setup(Context context)
				throws IOException, InterruptedException {
		  logger.info("开始启动setup了哈哈哈哈");
		    // System.out.println("运行了.........");
		  Configuration conf=context.getConfiguration();
		   path=DistributedCache.getLocalCacheFiles(conf);
	       System.out.println("获取的路径是:  "+path[0].toString());
	     //  FileSystem fs = FileSystem.get(conf);
	       FileSystem fsopen= FileSystem.getLocal(conf);
	     FSDataInputStream in = fsopen.open(path[0]);
	      // System.out.println(in.readLine());
//	       for(Path tmpRefPath : path) {
//	           if(tmpRefPath.toString().indexOf("ref.png") != -1) {
//	               in = reffs.open(tmpRefPath);
//	               break;
//	           }
//	       }
	       
     // FileReader reader=new FileReader("file://"+path[0].toString());
//      File f=new File("file://"+path[0].toString());
      // FSDataInputStream in=fs.open(new Path(path[0].toString()));
	     Scanner scan=new Scanner(in);
	       while(scan.hasNext()){
	    	   System.out.println(Thread.currentThread().getName()+"扫描的内容:  "+scan.next());
	       }
	       scan.close();
//		
		// System.out.println("size: "+path.length);
			
			
		}
		
		
		@Override
		protected void map(LongWritable key, Text value,Context context)
				throws IOException, InterruptedException {
		 
		//	System.out.println("map    aaa");
			//logger.info("Map里的任务");
			System.out.println("map里输出了");
		//	logger.info();
			context.write(new Text(""), new IntWritable(0));

		
		}
 
		
		 @Override
		protected void cleanup(Context context)
				throws IOException, InterruptedException {
		
			 
			 logger.info("清空任务了。。。。。。");
		}
		
	}
	
	
	private static class  FileReduce extends Reducer<Object, Object, Object, Object>{
		
		
		@Override
		protected void reduce(Object arg0, Iterable<Object> arg1,
				 Context arg2)throws IOException, InterruptedException {
			 
			
			System.out.println("我是reduce里面的东西");
		}
	}
	
	
	
	public static void main(String[] args)throws Exception {
		
		
		JobConf conf=new JobConf(TestDistributed.class);
		//conf.set("mapred.local.dir", "/root/hadoop");
		 //Configuration conf=new Configuration();
		
	    // conf.set("mapred.job.tracker","192.168.75.130:9001");
		//读取person中的数据字段
	  	   //conf.setJar("tt.jar");
		 
		//注意这行代码放在最前面,进行初始化,否则会报
		 String inputPath="hdfs://192.168.75.130:9000/root/input";	    
		 String outputPath="hdfs://192.168.75.130:9000/root/outputsort";
		 
		Job job=new Job(conf, "a");
		DistributedCache.addCacheFile(new URI("hdfs://192.168.75.130:9000/root/input/f1.txt"), job.getConfiguration());
		job.setJarByClass(TestDistributed.class);
		System.out.println("运行模式:  "+conf.get("mapred.job.tracker"));
		/**设置输出表的的信息  第一个参数是job任务,第二个参数是表名,第三个参数字段项**/
	   FileSystem fs=FileSystem.get(job.getConfiguration());
		
		  Path pout=new Path(outputPath);
		  if(fs.exists(pout)){
			  fs.delete(pout, true);
			  System.out.println("存在此路径, 已经删除......");
		  } 
		 /**设置Map类**/
		// job.setOutputKeyClass(Text.class);
		 //job.setOutputKeyClass(IntWritable.class);
		  job.setMapOutputKeyClass(Text.class);
		  job.setMapOutputValueClass(IntWritable.class);
		 job.setMapperClass(FileMapper.class);
	     job.setReducerClass(FileReduce.class);
		 FileInputFormat.setInputPaths(job, new Path(inputPath));  //输入路径
         FileOutputFormat.setOutputPath(job, new Path(outputPath));//输出路径  
		
		System.exit(job.waitForCompletion(true) ? 0 : 1);  
		
		
		
	}
	
	
	

}

在web页面上,查询日志输入情况,如下截图所示

如何使用Hadoop的DistributedCache
            
    
    博客分类: Hadoop hadoopDistributedCache 
当然,我们也可以根据web上的路径,到对应的日志目录下,查找日志的内容,看到上图就说明,我们上传的共享文件,读取成功了,只要在setup方法里面进行初始化后,对我们的程序来说,就是全局共享了,然后我们就可以结合我们的业务逻辑,来处理一些事了。



最后,在简单总结一下:DistributedCache文件共享的模式,只能在集群的环境中使用,如果在Local模式下测试,就会报如下的文件找不到异常:

运行模式:  local
存在此路径, 已经删除......
WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
WARN - JobClient.copyAndConfigureFiles(870) | No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1
WARN - LoadSnappy.<clinit>(46) | Snappy native library not loaded
INFO - TrackerDistributedCacheManager.downloadCacheObject(423) | Creating f1.txt in /root/hadoop1.2/hadooptmp/mapred/local/archive/-4778653900406898379_1788685676_88844454/192.168.75.130/root/input-work--1953076903080970848 with rwxr-xr-x
INFO - TrackerDistributedCacheManager.downloadCacheObject(463) | Cached hdfs://192.168.75.130:9000/root/input/f1.txt as /root/hadoop1.2/hadooptmp/mapred/local/archive/-4778653900406898379_1788685676_88844454/192.168.75.130/root/input/f1.txt
INFO - TrackerDistributedCacheManager.localizePublicCacheObject(486) | Cached hdfs://192.168.75.130:9000/root/input/f1.txt as /root/hadoop1.2/hadooptmp/mapred/local/archive/-4778653900406898379_1788685676_88844454/192.168.75.130/root/input/f1.txt
INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_local697121855_0001
INFO - LocalJobRunner$Job.run(340) | Waiting for map tasks
INFO - LocalJobRunner$Job$MapTaskRunnable.run(204) | Starting task: attempt_local697121855_0001_m_000000_0
INFO - Task.initialize(534) |  Using ResourceCalculatorPlugin : null
INFO - MapTask.runNewMapper(729) | Processing split: hdfs://192.168.75.130:9000/root/input/f1.txt:0+31
INFO - MapTask$MapOutputBuffer.<init>(949) | io.sort.mb = 100
INFO - MapTask$MapOutputBuffer.<init>(961) | data buffer = 79691776/99614720
INFO - MapTask$MapOutputBuffer.<init>(962) | record buffer = 262144/327680
INFO - TestDistributed$FileMapper.setup(60) | 开始启动setup了哈哈哈哈
获取的路径是:  /root/hadoop1.2/hadooptmp/mapred/local/archive/-4778653900406898379_1788685676_88844454/192.168.75.130/root/input/f1.txt
INFO - MapTask$MapOutputBuffer.flush(1289) | Starting flush of map output
INFO - LocalJobRunner$Job.run(348) | Map task executor complete.
WARN - LocalJobRunner$Job.run(435) | job_local697121855_0001
java.lang.Exception: java.io.FileNotFoundException: File /root/hadoop1.2/hadooptmp/mapred/local/archive/-4778653900406898379_1788685676_88844454/192.168.75.130/root/input/f1.txt does not exist.
	at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:354)
Caused by: java.io.FileNotFoundException: File /root/hadoop1.2/hadooptmp/mapred/local/archive/-4778653900406898379_1788685676_88844454/192.168.75.130/root/input/f1.txt does not exist.
	at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:402)
	at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:255)
	at org.apache.hadoop.fs.ChecksumFileSystem$ChecksumFSInputChecker.<init>(ChecksumFileSystem.java:125)
	at org.apache.hadoop.fs.ChecksumFileSystem.open(ChecksumFileSystem.java:283)
	at org.apache.hadoop.fs.FileSystem.open(FileSystem.java:427)
	at com.qin.testdistributed.TestDistributed$FileMapper.setup(TestDistributed.java:67)
	at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:142)
	at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:764)
	at org.apache.hadoop.mapred.MapTask.run(MapTask.java:364)
	at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:223)
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
	at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334)
	at java.util.concurrent.FutureTask.run(FutureTask.java:166)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603)
	at java.lang.Thread.run(Thread.java:722)
INFO - JobClient.monitorAndPrintJob(1393) |  map 0% reduce 0%
INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_local697121855_0001
INFO - Counters.log(585) | Counters: 0

如果你很幸运,在1.x的hadoop里看到如下所示的异常,那么你应该考虑如下的几个问题,第一,是不是以Local模式启动的MR任务,第二读取时的路径是不是有问题,使用DistributedCache共享的文件,会在我们每个节点上配置的目录里面找到对应的共享文件:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>
<!-- jobtracker的master地址-->
<property> 
<name>mapred.job.tracker</name> 
<value>192.168.75.130:9001</value> 
</property>
<property>
<!-- hadoop的日志输出指定目录-->
<name>mapred.local.dir</name>
<value>/root/hadoop1.2/mylogs</value>
</property>

</configuration>


共享的文件,会被下载到每个节点上的指定的文件夹里找到。
散仙找的一个的路径:
/root/hadoop1.2/mylogs/taskTracker/distcache/2726204645197711229_1788685676_88844454/192.168.75.130/root/input
其他的节点上也一样,只不过IP地址不一样,截图如下:


如何使用Hadoop的DistributedCache
            
    
    博客分类: Hadoop hadoopDistributedCache 
至此,我们就可以使用轻松的来使用DistributedCache来共享一些比较大的文件,或压缩包了。
  • 如何使用Hadoop的DistributedCache
            
    
    博客分类: Hadoop hadoopDistributedCache 
  • 大小: 108.8 KB
  • 如何使用Hadoop的DistributedCache
            
    
    博客分类: Hadoop hadoopDistributedCache 
  • 大小: 734.5 KB
  • 如何使用Hadoop的DistributedCache
            
    
    博客分类: Hadoop hadoopDistributedCache 
  • 大小: 91.6 KB