并发编程之Java8如何优化CAS性能
举个例子,比如说10个线程分别对data执行一次data++操作,我们以为最后data的值会变成10,其实不是。因为多线程并发操作下,就是会有这种安全问题,导致数据结果不准确。
public class Test {
private int data=0;
//多个线程对一个data不停的累加1操作
}
这里解释下为啥会得不到 10(知道的可直接跳过), i++ 这个操作,计算机需要分成三步来执行。
1、读取 i 的值。
2、把 i 加 1.
3、把 最终 i 的结果写入内存之中。
所以,(1)、假如线程 A 读取了 i 的值为 i = 0,(2)、这个时候线程 B 也读取了 i 的值 i = 0。(3)、接着 A把 i 加 1,然后写入内存,此时 i = 1。(4)、紧接着,B也把 i 加 1,此时线程B中的 i = 1,然后线程 B 把 i 写入内存,此时内存中的 i = 1。也就是说,线程 A, B 都对 i 进行了自增,但最终的结果却是 1,不是 2.
解决方案一:使用synchronized
public class Test {
private int data=0;
public synchronized void increment(){
data++;
}
//多个线程调用increment()
}
加了synchronized,代码就是线程安全的了,也就是让每个线程要进入increment()方法之前先得尝试加锁,同一时间只有一个线程能加锁,其他线程需要等待锁,jdk确实做了很多优化,增加了偏向锁、轻量级锁,当线程增多线程竞争带来的开销依然很大,性能不高。
解决方案二:Atomic原子类及其底层原理
java并发包下面提供了一系列的Atomic原子类,比如说AtomicInteger。
public class Test {
private AtomicInteger data=new AtomicInteger(0);
//多个线程调用data.incrementAndGet()
}
incrementAndGet底层源码:
public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5;
}
CAS(Compare and Set)即先比较再设置
compareAndSwapInt对应操作系统的一条硬件操作指令,尽管看似有很多操作在里面,但操作系统能够保证他是原子执行的。
虽然这种 CAS 的机制能够保证线程安全,但依然有一些问题。例如,当线程A即将要执行第三步的时候,线程 B 把 i 的值加1,之后又马上把 i 的值减 1,然后,线程 A 执行第三步,这个时候线程 A 是认为并没有人修改过 i 的值,因为 i 的值并没有发生改变。而这,就是我们平常说的ABA问题。
对于基本类型的值来说,这种把数字改变了在改回原来的值是没有太大影响的,但如果是对于引用类型的话,就会产生很大的影响了。
为了解决这个 ABA 的问题,我们可以引入版本控制,例如,每次有线程修改了引用的值,就会进行版本的更新,虽然两个线程持有相同的引用,但他们的版本不同,这样,我们就可以预防 ABA 问题了。Java 中提供了 AtomicStampedReference 这个类,就可以进行版本控制了。
java8对CAS的优化
大量的线程同时并发修改一个AtomicInteger,可能有很多线程会不停的自旋,进入一个无限重复的循环中,这些线程不停地获取值,然后发起CAS操作,但是发现这个值被别人改过了,于是再次进入下一个循环,获取值,发起CAS操作又失败了,再次进入下一个循环。
java8提供了高并发下非常优秀两个类LongAdder与DoubleAdder,以LongAdder为例,他就是尝试使用分段CAS以及自动分段迁移的方式来大幅度提升多线程高并发执行CAS操作的性能!
public class LongAdder extends Striped64 implements Serializable
LongAdder继承了Striped64类,来实现累加功能的,它是实现高并发累加的工具类;
Striped64的设计核心思路就是通过内部的分散计算来避免竞争。
Striped64内部包含一个base和一个Cell[] cells数组,又叫hash表。
没有竞争的情况下,要累加的数通过cas累加到base上;如果有竞争的话,会将要累加的数累加到Cells数组中的某个cell元素里面。所以整个Striped64的值为sum=base+∑[0~n]cells。
1、Striped64内部三个重要的成员变量:
/**
* 存放Cell的hash表,大小为2的幂。
*/
transient volatile Cell[] cells;
/**
* 基础值,
* 1. 在没有竞争时会更新这个值;
* 2. 在cells初始化的过程中,cells处于不可用的状态,这时候也会尝试将通过cas操作值累加到base。
*/
transient volatile long base;
/**
* 自旋锁,通过CAS操作加锁,用于保护创建或者扩展Cell表。
*/
transient volatile int cellsBusy;
(1)成员变量cells
AtomicInteger只有一个value,所有线程累加都要通过cas竞争value这一个变量,高并发下线程争用非常严重;
而LongAdder则有两个值用于累加,一个是base,它的作用类似于AtomicInteger里面的value,在没有竞争的情况不会用到cells数组,它为null,这时使用base做累加,有了竞争后cells数组就上场了,第一次初始化长度为2,以后每次扩容都是变为原来的两倍,直到cells数组的长度大于等于当前服务器cpu的数量为止就不在扩容(想下为什么到超过cpu数量的时候就不再扩容);每个线程会通过线程对cells[threadLocalRandomProbe%cells.length]位置的Cell对象中的value做累加,这样相当于将线程绑定到了cells中的某个cell对象上。
(2)成员变量cellsBusy
cellsBusy,它有两个值0 或1,它的作用是当要修改cells数组时加锁,防止多线程同时修改cells数组,0为无锁,1为加锁,加锁的状况有三种
1)cells数组初始化的时候;
2)cells数组扩容的时候;
3)如果cells数组中某个元素为null,给这个位置创建新的Cell对象的时候;
(3)成员变量base
它有两个作用:
1)在开始没有竞争的情况下,将累加值累加到base
2)在cells初始化的过程中,cells不可用,这时会尝试将值累加到base上;
2、Cell内部类
//为提高性能,使用注解@sun.misc.Contended,用来避免伪共享,
@sun.misc.Contended static final class Cell {
//用来保存要累加的值
volatile long value;
Cell(long x) { value = x; }
//使用UNSAFE类的cas来更新value值
final boolean cas(long cmp, long val) {
return UNSAFE.compareAndSwapLong(this, valueOffset, cmp, val);
}
private static final sun.misc.Unsafe UNSAFE;
//value在Cell类中存储位置的偏移量;
private static final long valueOffset;
//这个静态方法用于获取偏移量
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> ak = Cell.class;
valueOffset = UNSAFE.objectFieldOffset
(ak.getDeclaredField("value"));
} catch (Exception e) {
throw new Error(e);
}
}
}
这个类很简单,final类型,内部有一个value值,使用cas来更新它的值;Cell类唯一需要注意的地方就是Cell类的注解@sun.misc.Contended。
伪共享
说清楚Contended需要理解伪共享,cpu的缓存系统中是以缓存行(cache line)为单位存储的,缓存行是2的整数幂个连续字节,一般为32-256个字节。最常见的缓存行大小是64个字节,cache line是cache和memory之间数据传输的最小单元。
当多线程修改互相独立的变量时,如果这些变量共享同一个缓存行,就会无意中影响彼此的性能,这就是伪共享。
在core1上运行的线程想更新变量X,同时core2上的线程想要更新变量Y。不幸的是,这两个变量在同一个缓存行中。每个线程都要去竞争缓存行的所有权来更新变量。如果core1获得了所有权,缓存子系统将会使core2中对应的缓存行失效。当core2获得了所有权然后执行更新操作,core1就要使自己对应的缓存行失效。这会来来回回的经过L3缓存,大大影响了性能。如果互相竞争的核心位于不同的插槽,就要额外横跨插槽连接,问题可能更加严重。
举个例子:
public final static class VolatileLong {
public volatile long value = 0L;
}
定义一个VolatileLong类型的数组,然后让多个线程同时并发访问这个数组,这时可以想到,在多个线程同时处理数据时,数组中的多个VolatileLong对象可能存在同一个缓存行中,通过上文可知,这种情况就是伪共享。
为了解决这个问题在jdk1.6会采用long padding的方式,就是在防止被伪共享的变量的前后加上7个long类型的变量
public final static class VolatileLong {
volatile long p0, p1, p2, p3, p4, p5, p6;
public volatile long value = 0;
volatile long q0, q1, q2, q3, q4, q5, q6;
}
为什么这里需要加7个long?原因是缓存行大小是64个字节,一个long是8字节,为了填充一个缓存行,value自己是8字节再加上7个long即64字节
对于HotSpot JVM,所有对象都有两个字长的对象头。第一个字是由24位哈希码和8位标志位(如锁的状态或作为锁对象)组成的Mark Word。第二个字是对象所属类的引用。如果是数组对象还需要一个额外的字来存储数组的长度。每个对象的起始地址都对齐于8字节以提高性能。因此当封装对象的时候为了高效率,对象字段声明的顺序会被重排序成下列基于字节大小的顺序:
- doubles (8) 和 longs (8)
- ints (4) 和 floats (4)
- shorts (2) 和 chars (2)
- booleans (1) 和 bytes (1)
- references (4/8)
- <子类字段重复上述顺序>
在jdk1.8中加入了@sun.misc.Contended,移除了不优雅的long padding
注意:使用@sun.misc.Contended时,需要添加参数配置-XX:-RestrictContended,否则该注解不起作用。
在LongAdder的底层实现中,首先有一个base值,刚开始多线程来不停的累加数值,都是对base进行累加的,比如刚开始累加成了base = 5时候发现线程增多(也就是casBase操作失败),那么它会自动使用cell数组,每一个线程对应于一个cell,在每一个线程中对该cell进行cas操作,这样就可以提高并发效率,分散并发压力。在LongAdder中的源码如下:
public void add(long x) {
Cell[] as; long b, v; int m; Cell a;
/**
* 如果一下两种条件则继续执行if内的语句
* 1. cells数组不为null(不存在争用的时候,cells数组一定为null,一旦对base的cas操作失败,才会初始化cells数组)
* 2. 如果cells数组为null,如果casBase执行成功,则直接返回,如果casBase方法执行失败(casBase失败,说明第一次争用冲突产生,需要对cells数组初始化)进入if内;
* casBase方法很简单,就是通过UNSAFE类的cas设置成员变量base的值为base+要累加的值
* casBase执行成功的前提是无竞争,这时候cells数组还没有用到为null,可见在无竞争的情况下是类似于AtomticInteger处理方式,使用cas做累加。
*/
if ((as = cells) != null || !casBase(b = base, b + x)) {
//uncontended判断cells数组中,当前线程要做cas累加操作的某个元素是否#不#存在争用,如果cas失败则存在争用;uncontended=false代表存在争用,uncontended=true代表不存在争用。
boolean uncontended = true;
/**
*1. as == null : cells数组未被初始化,成立则直接进入if执行cell初始化
*2. (m = as.length - 1) < 0: cells数组的长度为0
*条件1与2都代表cells数组没有被初始化成功,初始化成功的cells数组长度为2;
*3. (a = as[getProbe() & m]) == null :如果cells被初始化,且它的长度不为0,则通过getProbe方法获取当前线程Thread的threadLocalRandomProbe变量的值,初始为0,然后执行threadLocalRandomProbe&(cells.length-1 ),相当于m%cells.length;如果cells[threadLocalRandomProbe%cells.length]的位置为null,这说明这个位置从来没有线程做过累加,需要进入if继续执行,在这个位置创建一个新的Cell对象;
*4. !(uncontended = a.cas(v = a.value, v + x)):尝试对cells[threadLocalRandomProbe%cells.length]位置的Cell对象中的value值做累加操作,并返回操作结果,如果失败了则进入if,重新计算一个threadLocalRandomProbe;
如果进入if语句执行longAccumulate方法,有三种情况
1. 前两个条件代表cells没有初始化,
2. 第三个条件指当前线程hash到的cells数组中的位置还没有其它线程做过累加操作,
3. 第四个条件代表产生了冲突,uncontended=false
**/
if (as == null || (m = as.length - 1) < 0 ||
(a = as[getProbe() & m]) == null ||
!(uncontended = a.cas(v = a.value, v + x)))
longAccumulate(x, null, uncontended);
}
}
当线程增多,每个cell中分配的线程数也会增多,当其中一个线程操作失败的时候,它会自动迁移到下一个cell中进行操作,这也就解决了CAS空旋转,自旋不停等待的问题。这就是自动迁移机制。
具体在源码中的体现如下(该段代码在抽象类Striped64下,LongAdder继承自该类):
三个参数第一个为要累加的值,第二个为null,第三个为wasUncontended表示调用方法之前的add方法是否未发生竞争;final void longAccumulate(long x, LongBinaryOperator fn,
boolean wasUncontended) {
//获取当前线程的threadLocalRandomProbe值作为hash值,如果当前线程的threadLocalRandomProbe为0,说明当前线程是第一次进入该方法,则强制设置线程的threadLocalRandomProbe为ThreadLocalRandom类的成员静态私有变量probeGenerator的值,后面会详细将hash值的生成;
//另外需要注意,如果threadLocalRandomProbe=0,代表新的线程开始参与cell争用的情况
//1.当前线程之前还没有参与过cells争用(也许cells数组还没初始化,进到当前方法来就是为了初始化cells数组后争用的),是第一次执行base的cas累加操作失败;
//2.或者是在执行add方法时,对cells某个位置的Cell的cas操作第一次失败,则将wasUncontended设置为false,那么这里会将其重新置为true;第一次执行操作失败;
//凡是参与了cell争用操作的线程threadLocalRandomProbe都不为0;
int h;
if ((h = getProbe()) == 0) {
//初始化ThreadLocalRandom;
ThreadLocalRandom.current(); // force initialization
//将h设置为0x9e3779b9
h = getProbe();
//设置未竞争标记为true
wasUncontended = true;
}
//cas冲突标志,表示当前线程hash到的Cells数组的位置,做cas累加操作时与其它线程发生了冲突,cas失败;collide=true代表有冲突,collide=false代表无冲突
boolean collide = false;
for (;;) {
Cell[] as; Cell a; int n; long v;
//这个主干if有三个分支
//1.主分支一:处理cells数组已经正常初始化了的情况(这个if分支处理add方法的四个条件中的3和4)
//2.主分支二:处理cells数组没有初始化或者长度为0的情况;(这个分支处理add方法的四个条件中的1和2)
//3.主分支三:处理如果cell数组没有初始化,并且其它线程正在执行对cells数组初始化的操作,及cellbusy=1;则尝试将累加值通过cas累加到base上
//先看主分支一
if ((as = cells) != null && (n = as.length) > 0) {
/**
*内部小分支一:这个是处理add方法内部if分支的条件3:如果被hash到的位置为null,说明没有线程在这个位置设置过值,没有竞争,可以直接使用,则用x值作为初始值创建一个新的Cell对象,对cells数组使用cellsBusy加锁,然后将这个Cell对象放到cells[m%cells.length]位置上
*/
if ((a = as[(n - 1) & h]) == null) {
//cellsBusy == 0 代表当前没有线程cells数组做修改
if (cellsBusy == 0) {
//将要累加的x值作为初始值创建一个新的Cell对象,
Cell r = new Cell(x);
//如果cellsBusy=0无锁,则通过cas将cellsBusy设置为1加锁
if (cellsBusy == 0 && casCellsBusy()) {
//标记Cell是否创建成功并放入到cells数组被hash的位置上
boolean created = false;
try {
Cell[] rs; int m, j;
//再次检查cells数组不为null,且长度不为空,且hash到的位置的Cell为null
if ((rs = cells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
//将新的cell设置到该位置
rs[j] = r;
created = true;
}
} finally {
//去掉锁
cellsBusy = 0;
}
//生成成功,跳出循环
if (created)
break;
//如果created为false,说明上面指定的cells数组的位置cells[m%cells.length]已经有其它线程设置了cell了,继续执行循环。
continue;
}
}
//如果执行的当前行,代表cellsBusy=1,有线程正在更改cells数组,代表产生了冲突,将collide设置为false
collide = false;
/**
*内部小分支二:如果add方法中条件4的通过cas设置cells[m%cells.length]位置的Cell对象中的value值设置为v+x失败,说明已经发生竞争,将wasUncontended设置为true,跳出内部的if判断,最后重新计算一个新的probe,然后重新执行循环;
*/
} else if (!wasUncontended)
//设置未竞争标志位true,继续执行,后面会算一个新的probe值,然后重新执行循环。
wasUncontended = true;
/**
*内部小分支三:新的争用线程参与争用的情况:处理刚进入当前方法时threadLocalRandomProbe=0的情况,也就是当前线程第一次参与cell争用的cas失败,这里会尝试将x值加到cells[m%cells.length]的value ,如果成功直接退出
*/
else if (a.cas(v = a.value, ((fn == null) ? v + x :
fn.applyAsLong(v, x))))
break;
/**
*内部小分支四:分支3处理新的线程争用执行失败了,这时如果cells数组的长度已经到了最大值(大于等于cup数量),或者是当前cells已经做了扩容,则将collide设置为false,后面重新计算prob的值
else if (n >= NCPU || cells != as)
collide = false;
/**
*内部小分支五:如果发生了冲突collide=false,则设置其为true;会在最后重新计算hash值后,进入下一次for循环
*/
else if (!collide)
//设置冲突标志,表示发生了冲突,需要再次生成hash,重试。 如果下次重试任然走到了改分支此时collide=true,!collide条件不成立,则走后一个分支
collide = true;
/**
*内部小分支六:扩容cells数组,新参与cell争用的线程两次均失败,且符合库容条件,会执行该分支
*/
else if (cellsBusy == 0 && casCellsBusy()) {
try {
//检查cells是否已经被扩容
if (cells == as) { // Expand table unless stale
Cell[] rs = new Cell[n << 1];
for (int i = 0; i < n; ++i)
rs[i] = as[i];
cells = rs;
}
} finally {
cellsBusy = 0;
}
collide = false;
continue; // Retry with expanded table
}
//为当前线程重新计算hash值
h = advanceProbe(h);
//这个大的分支处理add方法中的条件1与条件2成立的情况,如果cell表还未初始化或者长度为0,先尝试获取cellsBusy锁。
}else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
boolean init = false;
try { // Initialize table
//初始化cells数组,初始容量为2,并将x值通过hash&1,放到0个或第1个位置上
if (cells == as) {
Cell[] rs = new Cell[2];
rs[h & 1] = new Cell(x);
cells = rs;
init = true;
}
} finally {
//解锁
cellsBusy = 0;
}
//如果init为true说明初始化成功,跳出循环
if (init)
break;
}
/**
*如果以上操作都失败了,则尝试将值累加到base上;
*/
else if (casBase(v = base, ((fn == null) ? v + x :
fn.applyAsLong(v, x))))
break; // Fall back on using base
}
}
(1)关于hash的生成
hash是LongAdder定位当前线程应该将值累加到cells数组哪个位置上的,所以hash的算法是非常重要的,下面就来看看它的实现。
java的Thread类里面有一个成员变量
@sun.misc.Contended("tlr")
int threadLocalRandomProbe;
threadLocalRandomProbe这个变量的值就是LongAdder用来hash定位Cells数组位置的,平时线程的这个变量一般用不到,它的值一直都是0。
在LongAdder的父类Striped64里通过getProbe方法获取当前线程threadLocalRandomProbe的值:
static final int getProbe() {
//PROBE是threadLocalRandomProbe变量在Thread类里面的偏移量,所以下面语句获取的就是threadLocalRandomProbe的值;
return UNSAFE.getInt(Thread.currentThread(), PROBE);
}
(2)threadLocalRandomProbe的初始化
线程对LongAdder的累加操作,在没有进入longAccumulate方法前,threadLocalRandomProbe一直都是0,当发生争用后才会进入longAccumulate方法中,进入该方法第一件事就是判断threadLocalRandomProbe是否为0,如果为0,则将其设置为0x9e3779b9
int h;
if ((h = getProbe()) == 0) {
ThreadLocalRandom.current();
h = getProbe();
//设置未竞争标记为true
wasUncontended = true;
}
重点在这行ThreadLocalRandom.current();
public static ThreadLocalRandom current() {
if (UNSAFE.getInt(Thread.currentThread(), PROBE) == 0)
localInit();
return instance;
}
在current方法中判断如果probe的值为0,则执行locaInit()方法,将当前线程的probe设置为非0的值,该方法实现如下:
static final void localInit() {
//private static final AtomicInteger probeGenerator =
new AtomicInteger();
//private static final int PROBE_INCREMENT = 0x9e3779b9;
int p = probeGenerator.addAndGet(PROBE_INCREMENT);
//prob不能为0
int probe = (p == 0) ? 1 : p; // skip 0
long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
//获取当前线程
Thread t = Thread.currentThread();
UNSAFE.putLong(t, SEED, seed);
//将probe的值更新为probeGenerator的值
UNSAFE.putInt(t, PROBE, probe);
}
probeGenerator 是static 类型的AtomicInteger类,每执行一次localInit()方法,都会将probeGenerator 累加一次0x9e3779b9这个值;,0x9e3779b9这个数字的得来是 2^32 除以一个常数,这个常数就是传说中的黄金比例 1.6180339887;然后将当前线程的threadLocalRandomProbe设置为probeGenerator 的值,如果probeGenerator 为0,这取1;
(3)threadLocalRandomProbe重新生成
就是将prob的值左右移位 、异或操作三次
static final int advanceProbe(int probe) {
probe ^= probe << 13; // xorshift
probe ^= probe >>> 17;
probe ^= probe << 5;
UNSAFE.putInt(Thread.currentThread(), PROBE, probe);
return probe;
}
当我们需要获取多线程更新后的值的时候,只需要将base和cell数组中的值加起来返回即可
/**
* Returns the current sum. The returned value is <em>NOT</em> an
* atomic snapshot; invocation in the absence of concurrent
* updates returns an accurate result, but concurrent updates that
* occur while the sum is being calculated might not be
* incorporated.
*
* @return the sum
*/
public long sum() {
Cell[] as = cells; Cell a;
long sum = base;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
上一篇: Java线程的等待与唤醒实例
下一篇: Java多线程机制