TensorFlow拟合一条直线
程序员文章站
2022-05-23 12:25:13
...
最近学习TensorFlow,从最基本的做起,这是一个简单的拟合一条直线的例子,并且训练201次,每20步输出一次,并输出图像:
开始训练:
训练100步后:
以下是完整代码:
#coding: utf-8
#author: 吴晶
#wechat: 18007148050
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# a = tf.constant(2)
# b = tf.constant(3)
#
# with tf.Session() as sess:
# print(sess.run(a)+sess.run(b))
# state = tf.Variable(0,name='counter')
# one = tf.constant(1)
# new_value = tf.add(state,one)
# update = tf.assign(state,new_value)
# init = tf.global_variables_initializer()
# with tf.Session() as sess:
# sess.run(init)
# for _ in range(3):
# sess.run(update)
# print(sess.run(state))
# input1 = tf.placeholder(tf.float32)
# input2 = tf.placeholder(tf.float32)
#
# output = tf.multiply(input1,input2)
#
# with tf.Session() as sess:
# print(sess.run(output,feed_dict={input1:[7.],input2:[2.]}
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3
Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))
y = Weights*x_data + biases
loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion()
plt.show()
for step in range(201):
sess.run(train)
prediction = sess.run(Weights)*x_data + sess.run(biases)
lines = ax.plot(x_data,prediction,'r-',lw=3)
plt.pause(0.1)
try:
ax.lines.remove(lines[0])
except Exception:
pass
if step % 20 == 0:
print(step,sess.run(Weights),sess.run(biases))