欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

图的深度优先搜索和广度优先搜索

程序员文章站 2022-05-22 21:10:34
...

深度优先搜索是基于树的先根遍历的。
广度优先搜索类似树的层次遍历。
图的遍历是指访问图中每一个顶点,,且只访问一次的过程。这两种遍历都会生成一个生成树,可以用类来建模。树的深度优先搜索首先访问根结点,然后递归的访问根结点的子树。类似的,图的深度优先搜索首先访问一个顶点,然后递归的访问和这个顶点相连的所有顶点。不同之处在于图可能包含环,这可能会导致无限的递归。为了避免这个问题,需要跟踪已经访问过的顶点。
深度优先搜索思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。 若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。
广度优先搜索思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2...的顶点。

邻接矩阵实现的无向图
public class MatrixUDG {

    private char[] mVexs;       // 顶点集合
    private int[][] mMatrix;    // 邻接矩阵

    /* 
     * 创建图(自己输入数据)
     */
    public MatrixUDG() {

        // 输入"顶点数"和"边数"
        System.out.printf("input vertex number: ");
        int vlen = readInt();
        System.out.printf("input edge number: ");
        int elen = readInt();
        if ( vlen < 1 || elen < 1 || (elen > (vlen*(vlen - 1)))) {
            System.out.printf("input error: invalid parameters!\n");
            return ;
        }
        
        // 初始化"顶点"
        mVexs = new char[vlen];
        for (int i = 0; i < mVexs.length; i++) {
            System.out.printf("vertex(%d): ", i);
            mVexs[i] = readChar();
        }

        // 初始化"边"
        mMatrix = new int[vlen][vlen];
        for (int i = 0; i < elen; i++) {
            // 读取边的起始顶点和结束顶点
            System.out.printf("edge(%d):", i);
            char c1 = readChar();
            char c2 = readChar();
            int p1 = getPosition(c1);
            int p2 = getPosition(c2);

            if (p1==-1 || p2==-1) {
                System.out.printf("input error: invalid edge!\n");
                return ;
            }

            mMatrix[p1][p2] = 1;
            mMatrix[p2][p1] = 1;
        }
    }

    /*
     * 创建图(用已提供的矩阵)
     *
     * 参数说明:
     *     vexs  -- 顶点数组
     *     edges -- 边数组
     */
    public MatrixUDG(char[] vexs, char[][] edges) {
        
        // 初始化"顶点数"和"边数"
        int vlen = vexs.length;
        int elen = edges.length;

        // 初始化"顶点"
        mVexs = new char[vlen];
        for (int i = 0; i < mVexs.length; i++)
            mVexs[i] = vexs[i];

        // 初始化"边"
        mMatrix = new int[vlen][vlen];
        for (int i = 0; i < elen; i++) {
            // 读取边的起始顶点和结束顶点
            int p1 = getPosition(edges[i][0]);
            int p2 = getPosition(edges[i][1]);

            mMatrix[p1][p2] = 1;
            mMatrix[p2][p1] = 1;
        }
    }

    /*
     * 返回ch位置
     */
    private int getPosition(char ch) {
        for(int i=0; i<mVexs.length; i++)
            if(mVexs[i]==ch)
                return i;
        return -1;
    }

    /*
     * 读取一个输入字符
     */
    private char readChar() {
        char ch='0';

        do {
            try {
                ch = (char)System.in.read();
            } catch (IOException e) {
                e.printStackTrace();
            }
        } while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));

        return ch;
    }

    /*
     * 读取一个输入字符
     */
    private int readInt() {
        Scanner scanner = new Scanner(System.in);
        return scanner.nextInt();
    }

    /*
     * 返回顶点v的第一个邻接顶点的索引,失败则返回-1
     */
    private int firstVertex(int v) {

        if (v<0 || v>(mVexs.length-1))
            return -1;

        for (int i = 0; i < mVexs.length; i++)
            if (mMatrix[v][i] == 1)
                return i;

        return -1;
    }

    /*
     * 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
     */
    private int nextVertex(int v, int w) {

        if (v<0 || v>(mVexs.length-1) || w<0 || w>(mVexs.length-1))
            return -1;

        for (int i = w + 1; i < mVexs.length; i++)
            if (mMatrix[v][i] == 1)
                return i;

        return -1;
    }

    /*
     * 深度优先搜索遍历图的递归实现
     */
    private void DFS(int i, boolean[] visited) {

        visited[i] = true;
        System.out.printf("%c ", mVexs[i]);
        // 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走
        for (int w = firstVertex(i); w >= 0; w = nextVertex(i, w)) {
            if (!visited[w])
                DFS(w, visited);
        }
    }

    /*
     * 深度优先搜索遍历图
     */
    public void DFS() {
        boolean[] visited = new boolean[mVexs.length];       // 顶点访问标记

        // 初始化所有顶点都没有被访问
        for (int i = 0; i < mVexs.length; i++)
            visited[i] = false;

        System.out.printf("DFS: ");
        for (int i = 0; i < mVexs.length; i++) {
            if (!visited[i])
                DFS(i, visited);
        }
        Syst