欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Java8 Stream原理深度解析

程序员文章站 2022-05-22 20:36:04
...

Java8 Stream原理深度解析

转载自:http://www.cnblogs.com/Dorae/p/7779246.html


上一篇文章中简要介绍了Java8的函数式编程,而在Java8中另外一个比较大且非常重要的改动就是Stream。在这篇文章中,将会对流的实现原理进行深度,解析,具体关于如何使用,请参考《Java8函数式编程》。

常用的流操作

在深入原理之前,我们有必要知道关于Stream的一些基础知识,关于Stream的操作分类,如表1-1所示。

表1-1 Stream的常用操作分类(表格引自这里)

Java8 Stream原理深度解析

如表1-1中所示,Stream中的操作可以分为两大类:中间操作与结束操作,中间操作只是对操作进行了记录,只有结束操作才会触发实际的计算(即惰性求值),这也是Stream在迭代大集合时高效的原因之一。中间操作又可以分为无状态(Stateless)操作与有状态(Stateful)操作,前者是指元素的处理不受之前元素的影响;后者是指该操作只有拿到所有元素之后才能继续下去。结束操作又可以分为短路与非短路操作,这个应该很好理解,前者是指遇到某些符合条件的元素就可以得到最终结果;而后者是指必须处理所有元素才能得到最终结果。

原理探秘

在探究Stream的执行原理之前,我们先看如下两段代码(本文将以code_1为例进行说明):

code_1

public static void main(String[] args) {
    List<String> list = Lists.newArrayList(
            "bcd", "cde", "def", "abc");
    List<String> result = list.stream()
            //.parallel()
            .filter(e -> e.length() >= 3)
            .map(e -> e.charAt(0))
            //.peek(System.out :: println)
            //.sorted()
            //.peek(e -> System.out.println("++++" + e))
            .map(e -> String.valueOf(e))
            .collect(Collectors.toList());
    System.out.println("----------------------------");
    System.out.println(result);
}

code_2

public void targetMethod() {
    List<String> list = Lists.newArrayList(
            "bcd", "cde", "def", "abc");
    List<String> result = Lists.newArrayListWithCapacity(list.size());
    for (String str : list) {
        if (str.length() >= 3) {
            char e = str.charAt(0);
            String tempStr = String.valueOf(e);
            result.add(tempStr);
        }
    }
    System.out.println("----------------------------");
    System.out.println(result);
}

很明显,在最终结果上而言,code_1与code_2是等价的。那么,Stream是怎么做的呢?显然不是每次操作都进行迭代,因为这对于执行时间与存储中间变量来说都将是噩梦。

要解决的问题

显然,如果code_2只对集合迭代了一次,也就是说相当高效。那么这么做有没有弊端?有!模板代码、中间变量、不利于并行都是其存在的问题。但是按着code_2的思路可以知道有以下几个问题需要解决:

  • 如何记录每次操作?
  • 操作如何叠加?
  • 叠加后的操作如何执行?
  • 最后的结果如何存储?

包结构分析

那么Stream是如何解决的呢?所谓源码之下,无所遁形。那么,首先来看一下Stream包的结构(如图1-1所示)。

Java8 Stream原理深度解析

图1-1 Stream包的结构示意图

其中各个部分的主要功能为:

  1. 主要是各种操作的工厂类、数据的存储结构以及收集器的工厂类等;
  2. 主要用于Stream的惰性求值实现;
  3. Stream的并行计算框架;
  4. 存储并行流的中间结果;
  5. 终结操作的定义;

我们单独把第二部分拎出来用于说明Stream的惰性求值实现,如图1-2所示,Java8针对Int、long、double进行了优化,主要用于频繁的拆装箱。我们以引用类型进行介绍,在图中已经标为绿色。

  • BaseStream规定了流的基本接口,比如iterator、spliterator、isParallel等;
  • Stream中定义了map、filter、flatmap等用户关注的常用操作;
  • PipelineHelper主要用于Stream执行过程中相关结构的构建;
  • Head、StatelessOp、StatefulOp为ReferencePipeline中的内部类。

Java8 Stream原理深度解析

图1-2

操作如何记录

关于操作如何记录,在JDK源码注释中多次用(操作)stage来标识用户的每一次操作,而通常情况下Stream的操作又需要一个回调函数,所以一个完整的操作是由数据来源、操作、回调函数组成的三元组来表示。而在具体实现中,使用实例化的ReferencePipeline来表示,即图1-2中的Head、StatelessOp、StatefulOp的实例。

如code_3、code_4所示为调用stream.map()的关键的两个方法,在用户
调用一系列操作后会形成如图1-3所示的双链表结构。

Java8 Stream原理深度解析

图1-3

code_3(ReferencePipeline.map())

@Override
@SuppressWarnings("unchecked")
public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {
    Objects.requireNonNull(mapper);
    return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
                                 StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
        @Override
        Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
            return new Sink.ChainedReference<P_OUT, R>(sink) {
                @Override
                public void accept(P_OUT u) {
                    downstream.accept(mapper.apply(u));
                }
            };
        }
    };
}

code_4(AbstractPipeline.AbstractPipeline())

AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) {
    if (previousStage.linkedOrConsumed)
        throw new IllegalStateException(MSG_STREAM_LINKED);
    previousStage.linkedOrConsumed = true;
    previousStage.nextStage = this;

    this.previousStage = previousStage;
    this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK;
    this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags);
    this.sourceStage = previousStage.sourceStage;
    if (opIsStateful())
        sourceStage.sourceAnyStateful = true;
    this.depth = previousStage.depth + 1;
}

如何叠加

在上一步已经在stage中记录了每一步操作,此时并没有执行。但是stage只是保存了当前的操作,并不能确定下一个stage需要何种操作,何种数据,其实JDK为此定义了Sink接口,其中只有begin()、end()、cancellationRequested()、accept()四个接口(如表1-2所示,摘自这里),其中中间操作的子类中包含一个指向下游sink的指针。

表1-2

Java8 Stream原理深度解析

现在转向code_3,可以看出,在satge链中,每一步都包含了opWrapSink()。当调用终结操作时,将会触发code_5从最后一个stage(终结操作产生的satge)开始,递归产生图1-4所示的结构。

code_5(AbstractPipeline.wrapSink())

@Override
@SuppressWarnings("unchecked")
final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {
    Objects.requireNonNull(sink);

    for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) {
        sink = p.opWrapSink(p.previousStage.combinedFlags, sink);
    }
    return (Sink<P_IN>) sink;
}

Java8 Stream原理深度解析

图1-4

如何执行

所有的操作已经形成了图1-4的结构,接下来就会触发code_6,此时结果就会产生对应的结果啦!

code_6(AbstractPipelie.copyInto())

@Override
final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
    Objects.requireNonNull(wrappedSink);

    if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {
        wrappedSink.begin(spliterator.getExactSizeIfKnown());
        spliterator.forEachRemaining(wrappedSink);
        wrappedSink.end();
    }
    else {
        copyIntoWithCancel(wrappedSink, spliterator);
    }
}

并行原理

那么,Stream是如何并行执行的呢?其实产生stage链的过程和串行并没有区别,只是在最终执行时进行了相应的调整,我们将code_1改变为code_7

code_7

public static void main(String[] args) {
    List<String> list = Lists.newArrayList(
            "bcd", "cde", "def", "abc");
    List<String> result = list.stream()
            .parallel()
            .filter(e -> e.length() >= 3)
            //.map(e -> e.charAt(0))
            //.peek(System.out :: println)
            .sorted()
            //.peek(e -> System.out.println("++++" + e))
            .map(e -> String.valueOf(e))
            .collect(Collectors.toList());
    System.out.println("----------------------------");
    System.out.println(result);
}

那么最终产生的stage链与sink的结构如图1-5所示,因为此时stage链中有一个有状态操作(sorted()),也就是说在这里必须处理完所有元素才能进行下一步操作。那么此时无论是并行还是串行,此时都会产生两个sink链,也就是代表了两次迭代,才产生了最终结果。

Java8 Stream原理深度解析

图1-5

那么,究竟是如何并行的呢?其实当调用collect操作时会调用code_8,其中的evaluateParallel()如code_9所示。

code_8(AbstractPipeline.evaluate())

final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {
    assert getOutputShape() == terminalOp.inputShape();
    if (linkedOrConsumed)
        throw new IllegalStateException(MSG_STREAM_LINKED);
    linkedOrConsumed = true;

    return isParallel()
           ? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags()))
           : terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));
}

code_9(ReduceOp.evaluateParallel())

@Override
    public <P_IN> R evaluateParallel(PipelineHelper<T> helper,
                                     Spliterator<P_IN> spliterator) {
        return new ReduceTask<>(this, helper, spliterator).invoke().get();
    }

其实Stream的并行处理是基于ForkJoin框架的,相关类与接口的结构如图1-6所示。其中AbstractShortCircuitTask用于处理短路操作,其他相关操作类似,会产生对应的Task。

Java8 Stream原理深度解析

图1-6

关于code_8中获取源Spliterator,如code_10所示,

code_10(AbstractPipeline.sourceSpliterator())

@SuppressWarnings("unchecked")
private Spliterator<?> sourceSpliterator(int terminalFlags) {
    Spliterator<?> spliterator = null;
    if (sourceStage.sourceSpliterator != null) {
        spliterator = sourceStage.sourceSpliterator;
        sourceStage.sourceSpliterator = null;
    }
    else if (sourceStage.sourceSupplier != null) {
        spliterator = (Spliterator<?>) sourceStage.sourceSupplier.get();
        sourceStage.sourceSupplier = null;
    }
    else {
        throw new IllegalStateException(MSG_CONSUMED);
    }

    if (isParallel() && sourceStage.sourceAnyStateful) {
        //如果是并行流并且有stage包含stateful操作
        //那么就会依次遍历stage,直到遇到stateful stage时
        int depth = 1;
        for (@SuppressWarnings("rawtypes") AbstractPipeline u = sourceStage, p = sourceStage.nextStage, e = this;
             u != e;
             u = p, p = p.nextStage) {

            int thisOpFlags = p.sourceOrOpFlags;
            if (p.opIsStateful()) {
                depth = 0;

                if (StreamOpFlag.SHORT_CIRCUIT.isKnown(thisOpFlags)) {
                    //如果有短路操作,则去除相应标记
                    thisOpFlags = thisOpFlags & ~StreamOpFlag.IS_SHORT_CIRCUIT;
                }
                //尽量以惰性求值的方式进行操作
                spliterator = p.opEvaluateParallelLazy(u, spliterator);

                thisOpFlags = spliterator.hasCharacteristics(Spliterator.SIZED)
                        ? (thisOpFlags & ~StreamOpFlag.NOT_SIZED) | StreamOpFlag.IS_SIZED
                        : (thisOpFlags & ~StreamOpFlag.IS_SIZED) | StreamOpFlag.NOT_SIZED;
            }
            p.depth = depth++;
            p.combinedFlags = StreamOpFlag.combineOpFlags(thisOpFlags, u.combinedFlags);
        }
    }

    if (terminalFlags != 0)  {
        // Apply flags from the terminal operation to last pipeline stage
        combinedFlags = StreamOpFlag.combineOpFlags(terminalFlags, combinedFlags);
    }

    return spliterator;
}

如何并行执行

关于各个task就行是如何并行执行,其实最终调用的是code_11所示,对应的流程如图1-7所示,其中交替fork子节点是为了缓和数据分片不均造成的性能退化。

code_11(AbstractTask.compute())

@Override
public void compute() {
    Spliterator<P_IN> rs = spliterator, ls; // right, left spliterators
    long sizeEstimate = rs.estimateSize();
    long sizeThreshold = getTargetSize(sizeEstimate);
    boolean forkRight = false;
    @SuppressWarnings("unchecked") K task = (K) this;
    while (sizeEstimate > sizeThreshold && (ls = rs.trySplit()) != null) {
        K leftChild, rightChild, taskToFork;
        task.leftChild  = leftChild = task.makeChild(ls);
        task.rightChild = rightChild = task.makeChild(rs);
        task.setPendingCount(1);
        if (forkRight) {
            forkRight = false;
            rs = ls;
            task = leftChild;
            taskToFork = rightChild;
        }
        else {
            forkRight = true;
            task = rightChild;
            taskToFork = leftChild;
        }
        taskToFork.fork();
        sizeEstimate = rs.estimateSize();
    }
    task.setLocalResult(task.doLeaf());
    task.tryComplete();
}

Java8 Stream原理深度解析

图1-7

影响并行流的因素

数据大小;源数据结构(分割越容易越好),arraylist、数组比较好,hashSet、treeSet次之,linked最差;装箱;核的数量(可使用);单元处理开销(越大越好)

建议:

终结操作以外的操作,尽量避免副作用,避免突变基于堆栈的引用,或者在执行过程中进行任何I/O;传递给流操作的数据源应该是互不干扰(避免修改数据源)。

小结

本文主要探究了Stream的实现原理,并没有涉及到具体的流操作的用法(读者可以参考《java8函数式编程》),并且给出了使用Stream的部分建议。

参考文章

深入理解Java Stream流水线
Java 8 Stream探秘
java.util.stream 库简介

相关标签: stream