均匀分布产生高斯分布
程序员文章站
2022-05-22 16:01:14
...
简介
上图像处理课的小作业,顺便复习概率论!!
这里只用了三种方法,未完待续。。。
方法和证明
已经写成word了,不想再打一遍了awsl。
逆变换法
Box-Muller算法
拒绝采样
代码
逆变换代码
clc;
clear;
% 验证高斯噪声--------------
ep = 1e-3; %间隔
x = -4 : ep : 4;
num = length(x);
U = rand(1, num);
gaussian = @(u) sqrt(2) * erfinv(u); %高斯分布的逆累积分布函数
y = gaussian(2 * U - 1);
[f, xi] = ksdensity(y, x); %绘制概率分布
% 作图
figure(1);
plot(x, f);
% 添加高斯噪声--------------
img = imread('lena.bmp');
Nvar = [0 50]; % 均值0,标准差50
rate = 0.5; % 50%的区域加噪声
img_processed = add_Guassian_noise(img, Nvar, rate);
% 原图
figure(2);
subplot(1, 2, 1);
imshow(img);
title('src');
% 处理后
subplot(1, 2, 2);
imshow(img_processed);
title('dst');
function dst = add_Guassian_noise(src, Nvar, rate)
% src --> raw img to be processed
% Nvar --> [mean, std]
% rate --> the rate of noise
[r, c] = size(src);
src = double(src);
flag = (rand(r,c) > rate);
U = rand(r, c);
noise = Nvar(2) * sqrt(2) * erfinv(2 * U - 1) + Nvar(1);
dst = src + noise .* flag;
dst = uint8(dst);
end
Box-Muller算法代码
clc;
clear;
% 验证高斯噪声---------------
ep = 1e-3; %间隔
x = -4 : ep : 4;
num = length(x);
U1 = rand(1, num);
U2 = rand(1, num);
y = sqrt(-2 * log(U1)) .* cos(2*pi*U2); %Box-Muller公式
[f, xi] = ksdensity(y, x);
figure(1);
plot(x, f);
% 添加高斯噪声--------------
img = imread('lena.bmp');
Nvar = [0 50]; % 均值0,标准差50
rate = 0.5; % 50%的区域加噪声
img_processed = add_Gaussian_noise(img, Nvar, rate);
% 作图
figure(2);
subplot(1, 2, 1);
imshow(img);
title('src');
subplot(1, 2, 2);
imshow(img_processed);
title('dst');
function dst = add_Gaussian_noise(src, Nvar, rate)
% src --> raw img to be processed
% Nvar --> [mean, std]
% rate --> the rate of noise
[r, c] = size(src);
src = double(src);
flag = (rand(r,c) > rate);
U1 = rand(r, c);
U2 = rand(r, c);
noise = Nvar(2) * sqrt(-2 * log(U1)) .* cos(2 * pi * U2) + Nvar(1);
dst = src + noise .* flag;
dst = uint8(dst);
end
拒绝采样代码
clc;
clear;
% 检验高斯分布------------
ep = 1e-3;
x = -5 : ep : 5; %five sigma
top = 4 * 1 / 10; %由于均匀分布U~(-5,5),则p=0.1;但高斯分布最大值0.4,因此k取4。
sample_num = 1e5; %采样点1e5个
U = rand(1, sample_num) * 10 - 5;
gaussian = @(x) 1/sqrt(2*pi) * exp(-x.^2 / 2);
sample_id = (rand(1, sample_num) * top) <= gaussian(U); %接受的id
sample = U(sample_id);
[f, xi] = ksdensity(sample, x);
figure(1);
plot(x, f);
% 添加高斯噪声--------------
img = imread('lena.bmp');
Nvar = [0 50];
rate = 0.5;
img_processed = add_Guassian_noise(img, Nvar, rate);
% 作图
figure(2);
subplot(1, 2, 1);
imshow(img);
title('src');
subplot(1, 2, 2);
imshow(img_processed);
title('dst');
function dst = add_Guassian_noise(src, Nvar, rate)
% src --> raw img to be processed
% Nvar --> [mean, std]
% rate --> the rate of noise
[r, c] = size(src);
src = double(src);
flag = (rand(r,c) < rate);
sample_num = r * c; %每次取样r*c个,得到接受的个数n
noise = [];
top = 4 * 1 / 10;
while(length(noise) < sample_num) %取样n达到r*c后退出循环
U = 10 * rand(1, sample_num) - 5;
gau = 1/sqrt(2*pi) * exp(-U.^2 / 2);
sample_id = (rand(1, sample_num) * top <= gau);
noise = [noise U(sample_id)];
end
noise = noise(1, 1:sample_num);
noise = reshape(noise, [r, c]);
noise = Nvar(2) * noise + Nvar(1);
dst = src + noise .* flag;
dst = uint8(dst);
end
效果
检验
算法效果
引用
- https://blog.csdn.net/renwudao24/article/details/44463489
- https://www.jianshu.com/p/cb916e1ba399
- https://blog.csdn.net/libing_zeng/article/details/81842245?depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1&utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1