tensorflow实现一个简单的神经网络
程序员文章站
2022-05-22 13:07:02
...
import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation
# add a layer to nerual network
def add_layers(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.01)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
# create data
x = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x.shape)
y = np.square(x)-0.5 + noise
# plot data
# plt.scatter(x,y)
# plt.show()
xs = tf.placeholder(tf.float32, [None,1])
ys = tf.placeholder(tf.float32, [None,1])
# neural network layers
hidden1 = add_layers(xs, 1, 10, activation_function=tf.nn.relu)
output = add_layers(hidden1, 10, 1, activation_function=None)
# define loss
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-output), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
with tf.Session() as sess:
# initializer
sess.run(tf.global_variables_initializer())
# visualize
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x, y)
plt.ion()#程序不暂停,连续画图
plt.show()
for i in range(1000):
# _, l, pre = sess.run([train_step,loss, output],{xs:x,ys:y})
sess.run(train_step, feed_dict={xs:x,ys:y})
if i % 50 == 0:
print(sess.run(loss, feed_dict={xs:x,ys:y}))
try:
ax.lines.remove(lines[0])
except Exception:
pass
pre = sess.run(output, feed_dict={xs: x, ys: y})
lines = ax.plot(x, pre, 'r-', lw=5)
# plt.savefig("%d.png"% i)
plt.pause(0.1)
plt.ioff()
plt.show()
最后得到的效果如下:
以上gif实现的效果代码,首先保存图片,然后基于保存的图像进行gif图片的制作,代码如下
import matplotlib.pyplot as plt
import imageio,os
images = []
filenames=sorted((fn for fn in os.listdir('.') if fn.endswith('.png')))
for filename in filenames:
images.append(imageio.imread(filename))
imageio.mimsave('gif.gif', images,duration=0.5)
上一篇: 【三层】创建一个简单的C#三层结构
下一篇: 图像下采样