动态规划算法
问题描述:给定n个矩阵:A1,A2,...,An,其中Ai与Ai+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。
问题解析:由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。
完全加括号的矩阵连乘积可递归地定义为:
(1)单个矩阵是完全加括号的;
(2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)
例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。
看下面一个例子,计算三个矩阵连乘{A1,A2,A3};维数分别为10*100 , 100*5 , 5*50 按此顺序计算需要的次数((A1*A2)*A3):10X100X5+10X5X50=7500次,按此顺序计算需要的次数(A1*(A2*A3)):10*5*50+10*100*50=52500次
所以问题是:如何确定运算顺序,可以使计算量达到最小化。
算法思路:
例:设要计算矩阵连乘乘积A1A2A3A4A5A6,其中各矩阵的维数分别是:
A1 | A2 | A3 | A4 | A5 | A6 |
30*35 | 35*15 | 15*5 | 5*10 | 10*20 | 20*25 |
递推关系:
设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]。
当i=j时,A[i:j]=Ai,因此,m[i][i]=0,i=1,2,…,n
当i<j时,若A[i:j]的最优次序在Ak和Ak+1之间断开,i<=k<j,则:m[i][j]=m[i][k]+m[k+1][j]+pi-1pkpj。由于在计算是并不知道断开点k的位置,所以k还未定。不过k的位置只有j-i个可能。因此,k是这j-i个位置使计算量达到最小的那个位置。
综上,有递推关系如下:
构造最优解:
若将对应m[i][j]的断开位置k记为s[i][j],在计算出最优值m[i][j]后,可递归地由s[i][j]构造出相应的最优解。s[i][j]中的数表明,计算矩阵链A[i:j]的最佳方式应在矩阵Ak和Ak+1之间断开,即最优的加括号方式应为(A[i:k])(A[k+1:j)。因此,从s[1][n]记录的信息可知计算A[1:n]的最优加括号方式为(A[1:s[1][n]])(A[s[1][n]+1:n]),进一步递推,A[1:s[1][n]]的最优加括号方式为(A[1:s[1][s[1][n]]])(A[s[1][s[1][n]]+1:s[1][s[1][n]]])。同理可以确定A[s[1][n]+1:n]的最优加括号方式在s[s[1][n]+1][n]处断开...照此递推下去,最终可以确定A[1:n]的最优完全加括号方式,及构造出问题的一个最优解。
1、穷举法
列举出所有可能的计算次序,并计算出每一种计算次序相应需要的数乘次数,从中找出一种数乘次数最少的计算次序。
对于n个矩阵的连乘积,设其不同的计算次序为P(n)。每种加括号方式都可以分解为两个子矩阵的加括号问题:(A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:
以上递推关系说明,P(n)是随n的增长呈指数增长的。因此,穷举法不是一个多项式时间复杂度算法。
2、重叠递归
//A1 30*35 A2 35*15 A3 15*5 A4 5*10 A5 10*20 A6 20*25
//p[0-6]={30,35,15,5,10,20,25}
#include "stdafx.h"
#include <iostream>
using namespace std;
const int L = 7;
int RecurMatrixChain(int i,int j,int **s,int *p);//递归求最优解
void Traceback(int i,int j,int **s);//构造最优解
int main()
{
int p[L]={30,35,15,5,10,20,25};
int **s = new int *[L];
for(int i=0;i<L;i++)
{
s[i] = new int[L];
}
cout<<"矩阵的最少计算次数为:"<<RecurMatrixChain(1,6,s,p)<<endl;
cout<<"矩阵最优计算次序为:"<<endl;
Traceback(1,6,s);
return 0;
}
int RecurMatrixChain(int i,int j,int **s,int *p)
{
if(i==j) return 0;
int u = RecurMatrixChain(i,i,s,p)+RecurMatrixChain(i+1,j,s,p)+p[i-1]*p[i]*p[j];
s[i][j] = i;
for(int k=i+1; k<j; k++)
{
int t = RecurMatrixChain(i,k,s,p) + RecurMatrixChain(k+1,j,s,p) + p[i-1]*p[k]*p[j];
if(t<u)
{
u=t;
s[i][j]=k;
}
}
return u;
}
void Traceback(int i,int j,int **s)
{
if(i==j) return;
Traceback(i,s[i][j],s);
Traceback(s[i][j]+1,j,s);
cout<<"Multiply A"<<i<<","<<s[i][j];
cout<<" and A"<<(s[i][j]+1)<<","<<j<<endl;
3、动态规划实现
//3d1-2 矩阵连乘 动态规划迭代实现
//A1 30*35 A2 35*15 A3 15*5 A4 5*10 A5 10*20 A6 20*25
//p[0-6]={30,35,15,5,10,20,25}
#include "stdafx.h"
#include <iostream>
using namespace std;
const int L = 7;
int MatrixChain(int n,int **m,int **s,int *p);
void Traceback(int i,int j,int **s);//构造最优解
int main()
{
int p[L]={30,35,15,5,10,20,25};
int **s = new int *[L];
int **m = new int *[L];
for(int i=0;i<L;i++)
{
s[i] = new int[L];
m[i] = new int[L];
}
cout<<"矩阵的最少计算次数为:"<<MatrixChain(6,m,s,p)<<endl;
cout<<"矩阵最优计算次序为:"<<endl;
Traceback(1,6,s);
return 0;
}
int MatrixChain(int n,int **m,int **s,int *p)
{
for(int i=1; i<=n; i++)
{
m[i][i] = 0;
}
for(int r=2; r<=n; r++) //r为当前计算的链长(子问题规模)
{
for(int i=1; i<=n-r+1; i++)//n-r+1为最后一个r链的前边界
{
int j = i+r-1;//计算前边界为r,链长为r的链的后边界
m[i][j] = m[i+1][j] + p[i-1]*p[i]*p[j];//将链ij划分为A(i) * ( A[i+1:j] )
s[i][j] = i;
for(int k=i+1; k<j; k++)
{
//将链ij划分为( A[i:k] )* (A[k+1:j])
int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
if(t<m[i][j])
{
m[i][j] = t;
s[i][j] = k;
}
}
}
}
return m[1][L-1];
}
void Traceback(int i,int j,int **s)
{
if(i==j) return;
Traceback(i,s[i][j],s);
Traceback(s[i][j]+1,j,s);
cout<<"Multiply A"<<i<<","<<s[i][j];
cout<<" and A"<<(s[i][j]+1)<<","<<j<<endl;
}
4、备忘录方法
//3d1-2 矩阵连乘 备忘录递归实现
//A1 30*35 A2 35*15 A3 15*5 A4 5*10 A5 10*20 A6 20*25
//p[0-6]={30,35,15,5,10,20,25}
#include "stdafx.h"
#include <iostream>
using namespace std;
const int L = 7;
int LookupChain(int i,int j,int **m,int **s,int *p);
int MemoizedMatrixChain(int n,int **m,int **s,int *p);
void Traceback(int i,int j,int **s);//构造最优解
int main()
{
int p[L]={30,35,15,5,10,20,25};
int **s = new int *[L];
int **m = new int *[L];
for(int i=0;i<L;i++)
{
s[i] = new int[L];
m[i] = new int[L];
}
cout<<"矩阵的最少计算次数为:"<<MemoizedMatrixChain(6,m,s,p)<<endl;
cout<<"矩阵最优计算次序为:"<<endl;
Traceback(1,6,s);
return 0;
}
int MemoizedMatrixChain(int n,int **m,int **s,int *p)
{
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
m[i][j]=0;
}
}
return LookupChain(1,n,m,s,p);
}
int LookupChain(int i,int j,int **m,int **s,int *p)
{
if(m[i][j]>0)
{
return m[i][j];
}
if(i==j)
{
return 0;
}
int u = LookupChain(i,i,m,s,p) + LookupChain(i+1,j,m,s,p)+p[i-1]*p[i]*p[j];
s[i][j]=i;
for(int k=i+1; k<j; k++)
{
int t = LookupChain(i,k,m,s,p) + LookupChain(k+1,j,m,s,p) + p[i-1]*p[k]*p[j];
if(t<u)
{
u=t;
s[i][j] = k;
}
}
m[i][j] = u;
return u;
}
void Traceback(int i,int j,int **s)
{
if(i==j) return;
Traceback(i,s[i][j],s);
Traceback(s[i][j]+1,j,s);
cout<<"Multiply A"<<i<<","<<s[i][j];
cout<<" and A"<<(s[i][j]+1)<<","<<j<<endl;
}
5、分析
用算法RecurMatrixChain(1,4,s,p)计算a[1:4]的计算递归树如下图所示:
从上图可以看出很多子问题被重复运算。可以证明,该算法的计算时间T(n)有指数下界。设算法中判断语句和赋值语句为常数时间,则由算法的递归部分可得关于T(n)的递归不等式:
用数学归纳法可以证明,因此,算法RecurMatrixChain的计算时间也随n指数增长。
6、结果
上一篇: PHP-Beast是什么
下一篇: 数据库的接口