欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

K Closest Points to Origin 最接近原点的 K 个点(Medium)(JAVA)

程序员文章站 2022-05-21 18:27:00
【LeetCode】 973. K Closest Points to Origin 最接近原点的 K 个点(Medium)(JAVA)题目地址: https://leetcode.com/problems/k-closest-points-to-origin/题目描述:We have a list of pointson the plane. Find the K closest points to the origin (0, 0).(Here, the distance...

【LeetCode】 973. K Closest Points to Origin 最接近原点的 K 个点(Medium)(JAVA)

题目地址: https://leetcode.com/problems/k-closest-points-to-origin/

题目描述:

We have a list of points on the plane.  Find the K closest points to the origin (0, 0).

(Here, the distance between two points on a plane is the Euclidean distance.)

You may return the answer in any order.  The answer is guaranteed to be unique (except for the order that it is in.)

Example 1:

Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation: 
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].

Example 2:

Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)

Note:

  • 1 <= K <= points.length <= 10000
  • -10000 < points[i][0] < 10000
  • -10000 < points[i][1] < 10000

题目大意

我们有一个由平面上的点组成的列表 points。需要从中找出 K 个距离原点 (0, 0) 最近的点。

(这里,平面上两点之间的距离是欧几里德距离。)

你可以按任何顺序返回答案。除了点坐标的顺序之外,答案确保是唯一的。

解题方法

一般计算 K 个最值问题都用堆排序,下面用两种排序算法说明下为什么堆排序更快

插入排序

  1. 采用插入排序的方法
  2. 时间复杂度 O(nlogK)
class Solution {
    public int[][] kClosest(int[][] points, int K) {
        List<int[]> list = new ArrayList<>();
        for (int i = 0; i < points.length; i++) {
            insert(list, points, i, K);
        }
        int[][] res = new int[K][2];
        for (int i = 0; i < list.size(); i++) {
            res[i] = points[list.get(i)[0]];
        }
        return res;
    }

    // list[0]: index, list[1]: distance
    public void insert(List<int[]> list, int[][] points, int index, int K) {
        int sum = points[index][0] * points[index][0] + points[index][1] * points[index][1];
        if (list.size() >= K && sum > list.get(list.size() - 1)[1]) return;
        if (list.size() >= K) list.remove(list.size() - 1);
        int start = 0;
        int end = list.size() - 1;
        while (start <= end) {
            int mid = start + (end - start) / 2;
            if (list.get(mid)[1] == sum) {
                start = mid;
                break;
            } else if (list.get(mid)[1] > sum) {
                end = mid - 1;
            } else {
                start = mid + 1;
            }
        }
        list.add(start, new int[]{index, sum});
    }
}

执行耗时:52 ms,击败了14.21% 的Java用户
内存消耗:47.3 MB,击败了40.28% 的Java用户

堆排序

  1. 采用堆排序的方法
  2. 时间复杂度 O(Klogn):因为 K < n,所以 Klogn < nlogK,堆排序更快
class Solution {
    public int[][] kClosest(int[][] points, int K) {
        PriorityQueue<int[]> queue = new PriorityQueue<>((a, b) -> (b[1] - a[1]));
        for (int i = 0; i < K; i++) {
            queue.offer(new int[]{i, points[i][0] * points[i][0] + points[i][1] * points[i][1]});
        }
        for (int i = K; i < points.length; i++) {
            int dis = points[i][0] * points[i][0] + points[i][1] * points[i][1];
            if (dis < queue.peek()[1]) {
                queue.poll();
                queue.offer(new int[]{i, dis});
            }
        }
        int[][] res = new int[K][2];
        for (int i = 0; i < K; i++) {
            res[i] = points[queue.poll()[0]];
        }
        return res;
    }
}

执行耗时:31 ms,击败了56.28% 的Java用户
内存消耗:47.6 MB,击败了21.72% 的Java用户

欢迎关注我的公众号,LeetCode 每日一题更新
K Closest Points to Origin 最接近原点的 K 个点(Medium)(JAVA)

本文地址:https://blog.csdn.net/qq_16927853/article/details/109569591