欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

116. 填充每个节点的下一个右侧节点指针

程序员文章站 2022-05-20 16:14:35
...

题目描述:

给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。

初始状态下,所有 next 指针都被设置为 NULL。

 

示例:

输入:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":null,"right":null,"val":4},"next":null,"right":{"$id":"4","left":null,"next":null,"right":null,"val":5},"val":2},"next":null,"right":{"$id":"5","left":{"$id":"6","left":null,"next":null,"right":null,"val":6},"next":null,"right":{"$id":"7","left":null,"next":null,"right":null,"val":7},"val":3},"val":1}

输出:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":{"$id":"4","left":null,"next":{"$id":"5","left":null,"next":{"$id":"6","left":null,"next":null,"right":null,"val":7},"right":null,"val":6},"right":null,"val":5},"right":null,"val":4},"next":{"$id":"7","left":{"$ref":"5"},"next":null,"right":{"$ref":"6"},"val":3},"right":{"$ref":"4"},"val":2},"next":null,"right":{"$ref":"7"},"val":1}

解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。
 

提示:

你只能使用常量级额外空间。
使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。

算法:递归解法

/*
// Definition for a Node.
class Node {
public:
    int val;
    Node* left;
    Node* right;
    Node* next;

    Node() {}

    Node(int _val, Node* _left, Node* _right, Node* _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
};
*/
class Solution {
public:
    Node* connect(Node* root) {
        if(!root)
            return NULL;
        if(root->left)
            root->left->next = root->right;
        if(root->right)
            root->right->next =root->next!=NULL? root->next->left : NULL;
        connect(root->left);
        connect(root->right);
        return root;
    }
};

算法2:

层序遍历的非递归解法,需要借助辅助队列

/*
// Definition for a Node.
class Node {
public:
    int val;
    Node* left;
    Node* right;
    Node* next;

    Node() {}

    Node(int _val, Node* _left, Node* _right, Node* _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
};
*/
class Solution {
public:
    Node* connect(Node* root) {
        if (!root) return NULL;
        queue<Node*> q;
        q.push(root);
        while (!q.empty()) {
            int size = q.size();
            for (int i = 0; i < size; ++i) {
                Node *t = q.front(); q.pop();
                
                
                if (t->left) 
                {
                    q.push(t->left);
                    t->left->next = t->right;
                }
                if (t->right) 
                {
                    q.push(t->right);
                    t->right->next = (t->next==NULL ? NULL : t->next->left); 
                }
                    
            }
        }
        return root;
    }
};

另一种写法:

/*
// Definition for a Node.
class Node {
public:
    int val;
    Node* left;
    Node* right;
    Node* next;

    Node() {}

    Node(int _val, Node* _left, Node* _right, Node* _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
};
*/
class Solution {
public:
    Node* connect(Node* root) {
        if (!root) return NULL;
        queue<Node*> q;
        q.push(root);
        while (!q.empty()) {
            int size = q.size();
            for (int i = 0; i < size; ++i) {
                Node *t = q.front(); q.pop();
                
                if(i<size-1)
                    t->next = q.front();
                if (t->left) 
                {
                    q.push(t->left);
                    
                }
                if (t->right) 
                {
                    q.push(t->right);
                    
                }
                    
            }
        }
        return root;
    }
};

算法3:

参考 博主题解