欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

pandas切片学习

程序员文章站 2022-05-20 10:54:02
...

**pandas切片学习 **

(1)创建DataFrame

-df = pd.DataFrame({'age':[10,2,30,40], 'grade':[100.0,90.0,66.0,98.0], 'sex':['female','male','female','male']})

(2)打印DataFrame一些属性

df.dtypes
age        int64
grade    float64
sex       object
dtype: object
----------------------
df.value #array型
[[10 100.0 'female']
 [20 90.0 'male']
 [30 66.0 'female']
 [40 98.0 'male']]
----------------------
df.index
RangeIndex(start=0, stop=4, step=1)
----------------------
df.columns
Index(['age', 'grade', 'sex'], dtype='object')
----------------------
df
   age  grade     sex
0    10  100.0  female
1    20   90.0    male
2    30   66.0  female
3    40   98.0    male

(3)切片

print(df.loc[1:3,['sex','grade']])#只允许列名操作
print(df.loc[1:3,'age':'sex'])
sex  grade
1    male   90.0
2  female   66.0
3    male   98.0
   age  grade     sex
1   20   90.0    male
2   30   66.0  female
3   40   98.0    male
print(df.iloc[1:3,1:2])#iloc与loc不同,依靠列序定位而非列名,iloc区间是前闭后开
# 结果
   grade
1   90.0
2   66.0
print(df.at[1,'grade'])#定位到某个值
print(df.iat[1,1])
print(df.ix[[0,1]])#行选择
#结果
90.0
90.0
   age  grade     sex
0   10  100.0  female
1   20   90.0    male

#df只能单独进行行选择或者列选择,列选择只能是列名

print(df[0:2])#行选择,前闭后开
#结果
   age  grade     sex
0   10  100.0  female
1   20   90.0    male
print(df[['age','sex']])#列选择
#结果
   age     sex
0   10  female
1   20    male
2   30  female
3   40    male

本文来自 LY_ysys629 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/ly_ysys629/article/details/55224284?utm_source=copy

相关标签: pandas