欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

浙江大学软件学院2020年保研真题Distance of Triples (25 分)

程序员文章站 2022-05-19 20:58:11
...

时间限制:300 ms 内存限制:64 MB

The distance of triples (三元组) (a,b,c) is defined as D(a,b,c)=∣a−b∣+∣b−c∣+∣c−a∣. Now given three non-empty integer sets S1, S2 and S3, you are supposed to find the minimum distance of all the possible triples (a,b,c) where a∈S1, b∈S2 and c∈S3.

Input Specification:
Each input file contains one test case. For each case, the first line gives three positive integers N1, N2 and N3 (all no more than 104), which are the sizes of S1, S2 and S3, respectively. Then the members of the three sets are given in the following three lines, respectively. All the numbers are integers in the range [−104,104], and they are distinct within each set. The numbers in a line are separated by spaces.

Output Specification:
For each case, print in a line MinD(a, b, c) = d, where (a, b, c) are the triples that has the minimum distance, and d is the corresponding distance. If the solution is not unique, output the largest triples.

Sample Input:
4 4 6
0 9 -1 11
10 -25 11 -10
9 2 41 17 12 30
Sample Output:
MinD(11, 11, 12) = 2
Hint:
Notice that there are two solutions. The other one is MinD(9, 10, 9) = 2. Since (11, 11, 12) is larger, this one must be printed out.

这是一道408真题,可能比较典型吧,看了题解以后发现没有比较清楚的,直接用的王道书上的思想写了一遍

#include<bits/stdc++.h>
using namespace std;
struct node {
    int aa;
    int bb;
    int cc;
};
vector<int> a,b,c;
int find_min(int a,int b,int c) {
    if (a <= b && a <= c) {
        return true;
    } else {
        return false;
    }
}
int la,lb,lc;
vector<vector<int>> ans;
int main(void) {
    freopen("pataTrain//in.txt","r",stdin);
    cin>>la>>lb>>lc;
    for(int i = 0;i < la;i++) {
        int num;
        cin>>num;
        a.push_back(num);
    }
    for(int i = 0;i < lb;i++) {
        int num;
        cin>>num;
        b.push_back(num);
    }
    for(int i = 0;i < lc;i++) {
        int num;
        cin>>num;
        c.push_back(num);
    }
    int dis = 0;
    int mindis = INT_MAX;;
    int pa,pb,pc;
    sort(a.begin(),a.end());
    sort(b.begin(),b.end());
    sort(c.begin(),c.end());
    for(pa = 0,pb = 0,pc = 0;pa < la && pb < lb && pc < lc; ) {
        int na = a[pa],nb = b[pb],nc = c[pc];
        dis = abs(na - nb) + abs(nb - nc) + abs(nc - na);
        if (dis < mindis) {
            mindis = dis;
            ans.clear();
            ans.push_back({na,nb,nc});
        } else if(dis == mindis) {
            ans.clear();
            ans.push_back({na,nb,nc});
        }
        if (find_min(na,nb,nc)) {
            pa++; 
        } else if(find_min(nb,na,nc)) {
            pb++;
        } else {
            pc++;
        }
    }
    printf("MinD(%d, %d, %d) = %d",ans[0][0],ans[0][1],ans[0][2],mindis);
    return 0;
}