图的广度和深度优先遍历(邻接矩阵)
程序员文章站
2022-05-19 19:50:04
...
typedef struct
{
int edges[MAX_Size][MAX_Size];//存放边的关系
char vex[MAX_Size];//存放顶点的值
int n ,e;//分别为顶点数目和边的数目
}MGrap;
/建立有向图的邻接矩阵表示
void createGrap(MGrap *g)
{
cout <<"请输入顶点数和边的数"<<endl;
cin>>g->n>>g->e;
cout<<"请输入顶点信息"<<endl;
for (int i =0;i<g->n;i++)
{
cin>>g->vex[i];
}
//初始化矩阵
for (int i =0;i<g->n;i++)
{
for (int j =0;j<g->n;j++)
{
g->edges[i][j] = 0;
}
}
cout<<"请输入边的信息:起始边和终止边"<<endl;
for (int i =0;i<g->e;i++)
{
int start, end;
cin>>start>>end;
g->edges[start][end] = 1;
}
}
//邻接矩阵的深度遍历 非递归形式
//深度优先遍历
int visit[MAX_Size] = {0};
void DFS(MGrap g,int v)
{
visit[v] = 1;
cout<<g.vex[v]<<endl;
for (int i =0;i<g.n;i++)
{
if (g.edges[v][i]==1&&visit[i]==0)
DFS(g,i);
{
}
}
}
void DFSWithRecursion(MGrap *g,int v)
{
stack<int> s;
if (visit[v]== 0)
{
visit[v] =1;
cout<<g->vex[v]<<endl;
s.push(v);
while(!s.empty())
{
int m = s.top();
int i ;
for (i=0;i<g->n;i++)
{
if (g->edges[m][i]==1&& visit[i]==0)
{
cout<<g->vex[i]<<endl;
visit[i] =1;
s.push(i);//每次找到一个没有访问的节点就好
break;
}//有疑问
}
if (i == g->n)
{
s.pop();
}
}
}
}
#include<iostream>
#include<vector>
#include<string.h>
#include<algorithm>
#include<map>
#include<stack>
#include <queue>
#define MAX_Size 100
using namespace std;
//
// BinaryTreeNode.h
// BinaryTreeNode
//
// Created by 吴珝君 on 2018/12/25.
// Copyright © 2018年 闲着也是贤者. All rights reserved.
//
//邻接矩阵
typedef struct
{
int no;//顶点信息
char info;
}VertexType;
typedef struct
{
int edges[MAX_Size][MAX_Size];//存放边的关系
char vex[MAX_Size];//存放顶点的值
int n ,e;//分别为顶点数目和边的数目
}MGrap;
//建立有向图的邻接矩阵表示
void createGrap(MGrap *g)
{
cout <<"请输入顶点数和边的数"<<endl;
cin>>g->n>>g->e;
cout<<"请输入顶点信息"<<endl;
for (int i =0;i<g->n;i++)
{
cin>>g->vex[i];
}
//初始化矩阵
for (int i =0;i<g->n;i++)
{
for (int j =0;j<g->n;j++)
{
g->edges[i][j] = 0;
}
}
cout<<"请输入边的信息:起始边和终止边"<<endl;
for (int i =0;i<g->e;i++)
{
int start, end;
cin>>start>>end;
g->edges[start][end] = 1;
}
}
//邻接矩阵的深度遍历 非递归形式
//深度优先遍历
int visit[MAX_Size] = {0};
void DFS(MGrap g,int v)
{
visit[v] = 1;
cout<<g.vex[v]<<endl;
for (int i =0;i<g.n;i++)
{
if (g.edges[v][i]==1&&visit[i]==0)
DFS(g,i);
{
}
}
}
void DFSWithRecursion(MGrap *g,int v)
{
stack<int> s;
if (visit[v]== 0)
{
visit[v] =1;
cout<<g->vex[v]<<endl;
s.push(v);
while(!s.empty())
{
int m = s.top();
int i ;
for (i=0;i<g->n;i++)
{
if (g->edges[m][i]==1&& visit[i]==0)
{
cout<<g->vex[i]<<endl;
visit[i] =1;
s.push(i);//每次找到一个没有访问的节点就好
break;
}//有疑问
}
if (i == g->n)
{
s.pop();
}
}
}
}
void DFSTraverse(MGrap g)
{
for (int i =0; i<g.n;i++)
{
if (visit[i] ==0)
{
DFS(g,i);
}
}
}
//广度优先遍历
void BFSTraverse(MGrap g)
{
queue<int> q;
for (int i= 0;i<g.n;i++)
{
if (visit[i]==0)
{
visit[i] = 1;
cout<<g.vex[i]<<endl;
q.push(i);
}
while(!q.empty())
{
int m = q.front();
q.pop();
for (int j =0;j<g.n;j++)
{
if (g.edges[m][j]==1&& visit[j]==0)
{
visit[j] =1;
cout <<g.vex[j]<<endl;
q.push(j);
}
}
}
}
}
int main()
{
MGrap g;
createGrap(&g);
//DFSTraverse(g);
//BFSTraverse(g);
for (int i=0;i<4;i++)
{
DFSWithRecursion(&g,i);
}
system("pause");
}
上一篇: 邻接矩阵的深度优先遍历
下一篇: [总结] 平衡树总结