欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Flink结合Kafka实时写入Iceberg实践笔记

程序员文章站 2022-03-08 08:05:25
...

前言

上文提到使用Flink SQL写入hadoop catalog 的iceberg table 的简单示例,这次我就flink 消费kafka 流式写入iceberg table做一个验证,现记录如下:

环境:本地测试环境 JDK1.8  、Flink 1.11.2  、Hadoop3.0.0 、Hive2.1.1

一、前置说明

本文记录了使用HDFS的一个路径作为iceberg 的结果表,使用Flink实时消费kafka中的数据并写入iceberg表,并且使用Hive作为客户端实时读取。

因为iceberg强大的读写分离特性,新写入的数据几乎可以实时读取。参考 数据湖技术Iceberg的探索与实践.pdf 

 

二、使用步骤

1.创建Hadoop Catalog的Iceberg 表

代码如下(示例):

        System.out.println("---> 1. create iceberg hadoop catalog table  .... ");
        // create hadoop catalog
        tenv.executeSql("CREATE CATALOG hadoop_catalog WITH (\n" +
                "  'type'='iceberg',\n" +
                "  'catalog-type'='hadoop',\n" +
                "  'warehouse'='hdfs://nameservice1/tmp',\n" +
                "  'property-version'='1'\n" +
                ")");

        // change catalog
        tenv.useCatalog("hadoop_catalog");
        tenv.executeSql("CREATE DATABASE if not exists iceberg_hadoop_db");
        tenv.useDatabase("iceberg_hadoop_db");
        // create iceberg result table
        tenv.executeSql("drop table hadoop_catalog.iceberg_hadoop_db.iceberg_002"); 
        tenv.executeSql("CREATE TABLE  hadoop_catalog.iceberg_hadoop_db.iceberg_002 (\n" +
                "    user_id STRING COMMENT 'user_id',\n" +
                "    order_amount DOUBLE COMMENT 'order_amount',\n" +
                "    log_ts STRING\n" +
                ")");

 

2.使用Hive Catalog创建Kafka流表

代码如下(示例):

        System.out.println("---> 2. create kafka Stream table  .... ");
        String HIVE_CATALOG = "myhive";
        String DEFAULT_DATABASE = "tmp";
        String HIVE_CONF_DIR = "/xx/resources";
        Catalog catalog = new HiveCatalog(HIVE_CATALOG, DEFAULT_DATABASE, HIVE_CONF_DIR);
        tenv.registerCatalog(HIVE_CATALOG, catalog);
        tenv.useCatalog("myhive");
        // create kafka stream table
        tenv.executeSql("DROP TABLE IF EXISTS ods_k_2_iceberg");
        tenv.executeSql(
                "CREATE TABLE ods_k_2_iceberg (\n" +
                        " user_id STRING,\n" +
                        " order_amount DOUBLE,\n" +
                        " log_ts TIMESTAMP(3),\n" +
                        " WATERMARK FOR log_ts AS log_ts - INTERVAL '5' SECOND\n" +
                        ") WITH (\n" +
                        "  'connector'='kafka',\n" +
                        "  'topic'='t_kafka_03',\n" +
                        "  'scan.startup.mode'='latest-offset',\n" +
                        "  'properties.bootstrap.servers'='xx:9092',\n" +
                        "  'properties.group.id' = 'testGroup_01',\n" +
                        "  'format'='json'\n" +
                        ")");

3. 使用SQL连接kafka流表和iceberg 目标表

代码如下(示例):

        System.out.println("---> 3. insert into iceberg  table from kafka stream table .... ");
        tenv.executeSql(
                "INSERT INTO  hadoop_catalog.iceberg_hadoop_db.iceberg_002 " +
                        " SELECT user_id, order_amount, DATE_FORMAT(log_ts, 'yyyy-MM-dd') FROM myhive.tmp.ods_k_2_iceberg");

4.  数据验证

bin/kafka-console-producer.sh --broker-list xx:9092 --topic t_kafka_03
{"user_id":"a1111","order_amount":11.0,"log_ts":"2020-06-29 12:12:12"}
{"user_id":"a1111","order_amount":11.0,"log_ts":"2020-06-29 12:15:00"}
{"user_id":"a1111","order_amount":11.0,"log_ts":"2020-06-29 12:20:00"}
{"user_id":"a1111","order_amount":11.0,"log_ts":"2020-06-29 12:30:00"}
{"user_id":"a1111","order_amount":13.0,"log_ts":"2020-06-29 12:32:00"}
{"user_id":"a1112","order_amount":15.0,"log_ts":"2020-11-26 12:12:12"}


hive> add jar /home/zmbigdata/iceberg-hive-runtime-0.10.0.jar;
hive> CREATE EXTERNAL TABLE tmp.iceberg_002(user_id STRING,order_amount DOUBLE,log_ts STRING)
STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler' 
LOCATION '/tmp/iceberg_hadoop_db/iceberg_002';
 
hive> select * from tmp.iceberg_002  limit 5;
a1111	11.0	2020-06-29
a1111	11.0	2020-06-29
a1111	11.0	2020-06-29
a1111	11.0	2020-06-29
a1111	13.0	2020-06-29
Time taken: 0.108 seconds, Fetched: 5 row(s)

总结

本文仅仅简单介绍了使用Flink Table API 消费kafka并实时写入基于HDFS Hadoop Catalog的iceberg 结果表中,初步验证了该方案的可行性,当然鉴于该示例比较单一未经过线上验证,所以仅供参考。
不足之处烦请斧正,如对你有些许的帮助,还请不吝点赞支持Thanks♪(・ω・)ノ