欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

opencv 图像拼接

程序员文章站 2022-05-16 10:51:50
...
#include "pch.h"
#include <opencv2\opencv.hpp>
#include <opencv2\xfeatures2d.hpp>
#include <iostream>


using namespace cv;
using namespace cv::xfeatures2d;
using namespace std;


Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri)
{
	Mat originelP, targetP;
	originelP = (Mat_<double>(3, 1) << originalPoint.x, originalPoint.y, 1.0);
	targetP = transformMaxtri * originelP;
	float x = targetP.at<double>(0, 0) / targetP.at<double>(2, 0);
	float y = targetP.at<double>(1, 0) / targetP.at<double>(2, 0);
	return Point2f(x, y);
}

int main()
{		
	Mat image01 = imread("C:\\Users\\Administrator\\Pictures\\图像拼接\\1.jpg");
	Mat image02 = imread("C:\\Users\\Administrator\\Pictures\\图像拼接\\2.jpg");
	imshow("拼接图像1", image01);
	imshow("拼接图像2", image02);

	//灰度图转换  
	Mat image1, image2;
	cvtColor(image01, image1, CV_RGB2GRAY);
	cvtColor(image02, image2, CV_RGB2GRAY);

	//提取特征点    
	int minHessian = 800;
	Ptr<xfeatures2d::SURF> suftDetector = xfeatures2d::SURF::create(minHessian);
	vector<KeyPoint> keyPoint1, keyPoint2;
	suftDetector->detect(image1, keyPoint1);
	suftDetector->detect(image2, keyPoint2);

	//特征点描述,为下边的特征点匹配做准备    
	Mat imageDesc1, imageDesc2;
	suftDetector->compute(image1, keyPoint1, imageDesc1);
	suftDetector->compute(image2, keyPoint2, imageDesc2);

	//获得匹配特征点,并提取最优配对     
	FlannBasedMatcher matcher;
	vector<DMatch> matchePoints;
	matcher.match(imageDesc1, imageDesc2, matchePoints, Mat());
	sort(matchePoints.begin(), matchePoints.end()); //特征点排序    
													//获取排在前N个的最优匹配特征点  
	vector<Point2f> imagePoints1, imagePoints2;
	for (int i = 0; i < 10; i++)
	{
		imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
		imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
	}

	//获取图像1到图像2的投影映射矩阵,尺寸为3*3  
	Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
	Mat adjustMat = (Mat_<double>(3, 3) << 1.0, 0, image01.cols, 0, 1.0, 0, 0, 0, 1.0);
	Mat adjustHomo = adjustMat * homo;

	//获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位  
	Point2f originalLinkPoint, targetLinkPoint, basedImagePoint;
	originalLinkPoint = keyPoint1[matchePoints[0].queryIdx].pt;
	targetLinkPoint = getTransformPoint(originalLinkPoint, adjustHomo);
	basedImagePoint = keyPoint2[matchePoints[0].trainIdx].pt;

	//图像配准  
	Mat imageTransform1;
	warpPerspective(image01, imageTransform1, adjustMat*homo, Size(image02.cols + image01.cols + 10, image02.rows));

	//在最强匹配点的位置处衔接,最强匹配点左侧是图1,右侧是图2,这样直接替换图像衔接不好,光线有突变  
	Mat ROIMat = image02(Rect(Point(basedImagePoint.x, 0), Point(image02.cols, image02.rows)));
	ROIMat.copyTo(Mat(imageTransform1, Rect(targetLinkPoint.x, 0, image02.cols - basedImagePoint.x + 1, image02.rows)));

	namedWindow("拼接结果", 0);
	imshow("拼接结果", imageTransform1);
	waitKey();
	return 0;
}

 

相关标签: opencv