python opencv 图像拼接
程序员文章站
2022-05-16 10:34:32
...
代码:
import imutils
import cv2
import numpy as np
# stitch the images together to create a panorama
def detectAndDescribe(image):
# convert the image to grayscale
# gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
# check to see if we are using OpenCV 3.X
# detect and extract features from the image
descriptor = cv2.xfeatures2d.SIFT_create()
(kps, features) = descriptor.detectAndCompute(image, None)
# otherwise, we are using OpenCV 2.4.X
kps = np.float32([kp.pt for kp in kps])
# return a tuple of keypoints and features
return (kps, features)
def drawMatches(imageA, imageB, kpsA, kpsB, matches, status):
# initialize the output visualization image
(hA, wA) = imageA.shape[:2]
(hB, wB) = imageB.shape[:2]
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB
# loop over the matches
for ((trainIdx, queryIdx), s) in zip(matches, status):
# only process the match if the keypoint was successfully
# matched
if s == 1:
# draw the match
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
# return the visualization
return vis
def matchKeypoints(kpsA, kpsB, featuresA, featuresB,
ratio, reprojThresh):
# compute the raw matches and initialize the list of actual
# matches
matcher = cv2.DescriptorMatcher_create("BruteForce")
rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
matches = []
# loop over the raw matches
for m in rawMatches:
# ensure the distance is within a certain ratio of each
# other (i.e. Lowe's ratio test)
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
matches.append((m[0].trainIdx, m[0].queryIdx))
# computing a homography requires at least 4 matches
if len(matches) > 4:
# construct the two sets of points
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
# compute the homography between the two sets of points
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
reprojThresh)
# return the matches along with the homograpy matrix
# and status of each matched point
return (matches, H, status)
# otherwise, no homograpy could be computed
return None
def stitch(images, ratio=0.7, reprojThresh=4.0,showMatches=False):
# unpack the images, then detect keypoints and extract
# local invariant descriptors from them
(imageB, imageA) = images
top, bot, left, right = 0, 0, 0, 0
srcImg = cv2.copyMakeBorder(imageA, top, bot, left, right, cv2.BORDER_CONSTANT, value=(0, 0, 0))
testImg = cv2.copyMakeBorder(imageB, top, bot, left, right, cv2.BORDER_CONSTANT, value=(0, 0, 0))
img1gray = cv2.cvtColor(srcImg, cv2.COLOR_BGR2GRAY)
img2gray = cv2.cvtColor(testImg, cv2.COLOR_BGR2GRAY)
(kpsA, featuresA) = detectAndDescribe(img1gray)
(kpsB, featuresB) = detectAndDescribe(img2gray)
# match features between the two images
M = matchKeypoints(kpsA, kpsB,featuresA, featuresB, ratio, reprojThresh)
# if the match is None, then there aren't enough matched
# keypoints to create a panorama
if M is None:
return None
# otherwise, apply a perspective warp to stitch the images
# together
(matches, H, status) = M
result = cv2.warpPerspective(srcImg, H,
(srcImg.shape[1] + testImg.shape[1], srcImg.shape[0]))
result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
# check to see if the keypoint matches should be visualized
if showMatches:
vis = drawMatches(imageA, imageB, kpsA, kpsB, matches,
status)
# return a tuple of the stitched image and the
# visualization
return (result, vis)
# return the stitched image
return result
imageA = cv2.imread("in/pic2.jpg")
imageB = cv2.imread("in/pic1.jpg")
imageA = imutils.resize(imageA, width=5400)
imageB = imutils.resize(imageB, width=5400)
(result, vis) = stitch([imageA, imageB], showMatches=True)
cv2.imwrite("out/imageA.jpg",imageA)
cv2.imwrite("out/imageB.jpg",imageB)
cv2.imwrite("out/match.jpg",vis)
cv2.imwrite("out/result.jpg",result)
可以拼接高像素图片
上一篇: python+opencv图像拼接