欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

python opencv 图像拼接

程序员文章站 2022-05-16 10:34:32
...

代码:

import imutils
import cv2
import numpy as np



# stitch the images together to create a panorama
def detectAndDescribe(image):
        # convert the image to grayscale
     #   gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
        # check to see if we are using OpenCV 3.X
        
            # detect and extract features from the image
        descriptor = cv2.xfeatures2d.SIFT_create()
        (kps, features) = descriptor.detectAndCompute(image, None)
        # otherwise, we are using OpenCV 2.4.X
        kps = np.float32([kp.pt for kp in kps])
        # return a tuple of keypoints and features
        return (kps, features)
def drawMatches(imageA, imageB, kpsA, kpsB, matches, status):
        # initialize the output visualization image
        (hA, wA) = imageA.shape[:2]
        (hB, wB) = imageB.shape[:2]
        vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
        vis[0:hA, 0:wA] = imageA
        vis[0:hB, wA:] = imageB
        # loop over the matches
        for ((trainIdx, queryIdx), s) in zip(matches, status):
            # only process the match if the keypoint was successfully
            # matched
            if s == 1:
                # draw the match
                ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
                ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
                cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
        # return the visualization
        return vis
def matchKeypoints(kpsA, kpsB, featuresA, featuresB,
        ratio, reprojThresh):
        # compute the raw matches and initialize the list of actual
        # matches
        matcher = cv2.DescriptorMatcher_create("BruteForce")
        rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
        matches = []
        # loop over the raw matches
        for m in rawMatches:
            # ensure the distance is within a certain ratio of each
            # other (i.e. Lowe's ratio test)
            if len(m) == 2 and m[0].distance < m[1].distance * ratio:
                matches.append((m[0].trainIdx, m[0].queryIdx))
        # computing a homography requires at least 4 matches
        if len(matches) > 4:
            # construct the two sets of points
            ptsA = np.float32([kpsA[i] for (_, i) in matches])
            ptsB = np.float32([kpsB[i] for (i, _) in matches])
            # compute the homography between the two sets of points
            (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
                reprojThresh)
            # return the matches along with the homograpy matrix
            # and status of each matched point
            return (matches, H, status)
        # otherwise, no homograpy could be computed
        return None
def stitch(images, ratio=0.7, reprojThresh=4.0,showMatches=False):
        # unpack the images, then detect keypoints and extract
        # local invariant descriptors from them
        (imageB, imageA) = images
        top, bot, left, right = 0, 0, 0, 0
        srcImg = cv2.copyMakeBorder(imageA, top, bot, left, right, cv2.BORDER_CONSTANT, value=(0, 0, 0))
        testImg = cv2.copyMakeBorder(imageB, top, bot, left, right, cv2.BORDER_CONSTANT, value=(0, 0, 0))
        
        img1gray = cv2.cvtColor(srcImg, cv2.COLOR_BGR2GRAY)
        img2gray = cv2.cvtColor(testImg, cv2.COLOR_BGR2GRAY)
        
        (kpsA, featuresA) = detectAndDescribe(img1gray)
        (kpsB, featuresB) = detectAndDescribe(img2gray)
        # match features between the two images
        M = matchKeypoints(kpsA, kpsB,featuresA, featuresB, ratio, reprojThresh)
        # if the match is None, then there aren't enough matched
        # keypoints to create a panorama
        if M is None:
            return None
        # otherwise, apply a perspective warp to stitch the images
        # together
        
        (matches, H, status) = M
        result = cv2.warpPerspective(srcImg, H,
            (srcImg.shape[1] + testImg.shape[1], srcImg.shape[0]))
        result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
        # check to see if the keypoint matches should be visualized
        if showMatches:
            vis = drawMatches(imageA, imageB, kpsA, kpsB, matches,
                status)
            # return a tuple of the stitched image and the
            # visualization
            return (result, vis)
        # return the stitched image
        return result

imageA = cv2.imread("in/pic2.jpg")
imageB = cv2.imread("in/pic1.jpg")
imageA = imutils.resize(imageA, width=5400)
imageB = imutils.resize(imageB, width=5400)

(result, vis) = stitch([imageA, imageB], showMatches=True)

cv2.imwrite("out/imageA.jpg",imageA)
cv2.imwrite("out/imageB.jpg",imageB)
cv2.imwrite("out/match.jpg",vis)
cv2.imwrite("out/result.jpg",result)

可以拼接高像素图片

相关标签: 图像拼接